具备防紫外线设计,在露天监测时,设备部件不易老化:露天监测场景中,设备长期暴露在强烈的阳光照射下,紫外线会对设备的外壳、线缆、密封圈等部件造成严重的老化损伤。例如,普通塑料外壳在紫外线长期照射下会出现褪色、变脆、开裂等问题,导致外壳防护性能下降,雨水、灰尘容易渗入设备内部;线缆的绝缘层会因紫外线老化而变硬、脱落,引发电路短路风险;密封圈也会失去弹性,出现密封不严的情况。这些老化问题不会缩短设备的使用寿命,还可能导致设备故障频发,影响监测工作的连续性和数据准确性。具备防紫外线设计的监测设备,在材料选择和结构防护上进行了特殊处理。设备外壳采用添加抗紫外线剂的度工程塑料或金属材质,能有效抵御紫外线的侵蚀,延缓外壳老化速度,确保长期露天使用仍保持良好的结构强度和防护性能;线缆选用耐紫外线绝缘材料,即使长期暴露在阳光下,也能保持绝缘性能稳定;密封圈则采用耐候性强的橡胶材质,避免因紫外线照射失去弹性。此外,设备的显示屏、传感器探头等关键部件也配备了紫外线防护涂层或防护罩,防止紫外线对其性能造成影响。通过这些防紫外线设计,设备在露天监测环境中能有效抵抗紫外线损伤,部件不易老化。 采样头防生物腐蚀,在红树林湿地监测,延长设备使用寿命。取水式水质监测站价位
用于地下水漏斗区监测,深入采样,掌握水位下降对水质的影响:地下水漏斗区是由于长期过量开采地下水,导致地下水位持续下降,形成的形似漏斗状的地下水位降落区域。在地下水漏斗区,随着地下水位的不断下降,地下水的水动力条件、水文地质环境会发生改变,这可能会引发一系列水质问题。例如,地下水位下降可能导致周边劣质水体,如咸水、污水等向漏斗区渗透,造成地下水污染;同时,水位下降还可能使地下水与岩石、土壤的接触时间延长,增加水中溶解的矿物质含量,导致地下水硬度升高、矿化度增加等。用于地下水漏斗区监测的设备,具备深入采样的功能,能够突破常规监测设备采样深度的限制,到达地下水漏斗区不同深度的含水层。通过在不同深度进行采样,工作人员可以获取不同层次地下水的样品,并对这些样品进行详细的水质分析,检测水中的 pH 值、溶解性总固体(TDS)、氯化物、硫酸盐、重金属等指标的含量。工业废水排放取水式水质监测站厂商与处理设备联动,在养殖塘超标时自动换水,维持水质稳定。
支持多协议数据对接,在智慧水务平台中无缝融入,实现集中管理:智慧水务平台是整合城市水资源监测、供水、排水、污水处理等多环节数据,实现水资源智能化管理的系统。不同品牌、不同类型的水质监测设备,其数据传输协议往往存在差异,如 Modbus、LoRaWAN、NB-IoT、MQTT 等,若设备不支持多协议数据对接,就会形成 “数据孤岛”,无法将监测数据有效上传至智慧水务平台,导致平台无法实现对所有监测点的统一管理和数据分析。支持多协议数据对接的水质监测设备,内置了多种主流数据传输协议模块,能够根据智慧水务平台的协议要求,自动匹配对应的传输方式,无需额外加装转换设备或进行复杂的协议改造。设备采集到的水质数据(如 pH 值、COD、氨氮等)可实时、准确地传输至智慧水务平台,平台对接收的数据进行统一存储、分析、可视化展示。工作人员通过平台可远程查看所有监测点的实时水质状况、历史数据趋势,还能对设备运行状态进行远程监控,当设备出现故障或水质超标时,平台会自动发出预警。这种无缝融入的模式,打破了数据壁垒,实现了对水质监测数据的集中管理和高效利用,提升了智慧水务平台的整体运行效率和管理水平,为城市水资源的精细化管理提供了有力保障。
具备流量监测联动,在排污口按排放量比例采样,数据更具代表性:排污口的废水排放量并非恒定不变,会随着生产节奏、处理工艺调整等因素发生变化,而不同排放量下,废水中污染物的浓度和总量也可能存在差异。若采用固定频率采样的方式,无法根据排放量的变化调整采样策略,可能会导致采集的水样无法反映排污口的实际污染情况。例如,在排放量高峰时段,若采样频率过,可能会错过高浓度污染物排放的关键节点;在排放量谷时段,若采样频率过高,又会造成不必要的采样资源浪费。具备流量监测联动功能的排污口监测设备,集成了高精度流量监测模块和智能采样控制系统。流量监测模块能实时测量排污口的废水流量数据,并将数据传输至采样控制系统;控制系统根据流量数据,按照预设的排放量比例自动调整采样频率和采样量,排放量越大,采样频率越高、采样量越大,排放量越小,采样频率和采样量则相应降。这种按排放量比例采样的方式,使采集的水样能够与排污总量相匹配,更能真实反映不同排放规模下的污染物排放特征,计算出的污染物排放总量也更为准确。抗生物附着,在富营养化水体使用,减少藻类堵塞,降低维护。
用于饮料厂水源监测,实时把控矿物质含量,保障产品品质:水源是饮料生产的原料之一,水源中矿物质(如钙、镁、钾、钠、铁、锌等)的含量直接影响饮料的口感、风味和稳定性,同时也与饮料的营养价值密切相关。不同类型的饮料对水源矿物质含量有特定要求,例如,纯净水要求矿物质含量极,而天然矿泉水则需要含有特定种类和浓度的矿物质;若水源中矿物质含量过高,可能导致饮料出现沉淀、口感发涩等问题,影响产品品质;若矿物质含量过,则可能使饮料口感平淡,无法满足产品配方需求。用于饮料厂水源监测的设备,能够针对饮料生产的特殊需求,实时、地监测水源中各类矿物质的含量。设备配备了高精度离子选择电极或原子吸收光谱检测模块,可快速检测出水源中钙、镁、钾、钠等常规矿物质以及铁、锰、锌等微量元素的浓度,检测精度可达微克 / 升级别。工作人员可根据不同饮料产品的配方要求,在设备中预设对应的矿物质含量标准范围,设备在监测过程中,若发现某项矿物质含量超出或于预设范围,会立即发出预警信号,提醒工作人员及时采取调整措施,如启动水源净化处理系统(如离子交换、反渗透等)调节矿物质含量,或切换至备用水源。适应低温环境,在北方冬季河流监测,取水不冻结,保障数据连续。工业废水排放取水式水质监测站厂商
智能校准,在自来水厂自动用标准液校准,保证检测精度。取水式水质监测站价位
可设置采样间隔梯度,在水质渐变过程中,捕捉细微变化节点:在一些水质变化较为缓慢的场景中,如湖泊富营养化过程、河流污染物缓慢扩散过程、污水处理厂出水水质稳定调整过程等,水质指标并非在短时间内发生剧烈变化,而是呈现出渐变趋势。若采用固定间隔的采样方式,可能会错过水质渐变过程中的关键细微变化节点,导致无法准确把握水质变化的规律和趋势,影响对水质变化原因的分析和判断。可设置采样间隔梯度的水质监测设备,允许工作人员根据水质变化的预期趋势和实际情况,灵活设置不同阶段的采样间隔时间。例如,在水质相对稳定的阶段,可将采样间隔设置为较长时间(如 6 小时一次),减少不必要的采样;当监测到水质开始出现轻微变化迹象时,可将采样间隔梯度调整为较短时间(如 1 小时一次),加密采样频率,集中捕捉水质变化的细微节点。设备会按照设置的梯度间隔自动进行采样和检测,并详细记录每个采样时间点的水质数据。取水式水质监测站价位