外泌体(Exosome)是由细胞分泌而来的微小囊泡,直径约为30-200nm,形态也呈现出多样性。microRNA(miRNA)是一种大小约21—23个碱基的单链小分子RNA,是由具有发夹结构的约70—90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链)但是和siRNA密切相关。microRNA通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或抑制mRNA的翻译,从而在转录后水平调控蛋白表达。microRNA在物种进化中相当保守,在动物、植物等中发现的microRNA表达均有严格的组织特异性和时序性。microRNA在细胞生长和发育过程中起多种作用,包括调控发育、分化、凋亡和增殖等。高浓度集聚诱导细胞死亡的TNF-α,可使类风湿关节炎恶化。浙江外泌体miRNA芯片
外泌体(Exosome),是细胞外囊泡(EV)的一种主要类型,是直径为30至150nm的纳米大小的膜结构,大多数细胞都会分泌外泌体。外泌体存在于各种生物体液中,通过其携带的蛋白质、核酸、脂质和代谢物等来发挥细胞间通讯功能,参与免疫应答、代谢和心血管疾病、神经退行性疾病以及病症进展等多种生理和病理过程。在内体转变为成熟多囊泡内体(MVE)的过程中,内体膜向腔内出芽形成腔内囊泡(ILV),MVE与细胞膜融合释放ILV到细胞外,即形成外泌体。安徽外泌体融合实验不同肝脏疾病中,细胞分泌的外泌体所携带的核酸和蛋白组分之间存在差异。
人体内多种细胞及体液均可分泌外泌体,包括内皮细胞、免疫细胞、血小板、平滑肌细胞等。当其由宿主细胞被分泌到受体细胞中时,外泌体可通过其携带的蛋白质、核酸、脂类等来调节受体细胞的生物学活性。外泌体介导的细胞间通讯主要通过以下三种方式:一是外泌体膜蛋白可以与靶细胞膜蛋白结合,进而唤醒靶细胞细胞内的信号通路。二是在细胞外基质中,外泌体膜蛋白可以被蛋白酶剪切,剪切的碎片可以作为配体与细胞膜上的受体结合,从而唤醒细胞内的信号通路。有报道称一些外泌体膜上蛋白在其来源细胞膜上未能检测出。三是外泌体膜可以与靶细胞膜直接融合,非选择性的释放其所含的蛋白质、mRNA以及microRNA。
事实上,动物实验表明:在小鼠急性心肌梗塞术后,注射来源于间充质干细胞、心脏祖细胞、胚胎干细胞或心肌源性细胞的外泌体均可改善心脏功能,减轻心脏纤维化,刺激血管生成。例如,心源性细胞外泌体能通过特异性的巨噬细胞极化为急性心肌梗死提供心脏保护作用。心脏再灌注后,CDCexo的输注降低了大鼠和猪心肌梗死模型的梗死面积,而且CDCexo会减少梗死组织内CD68+巨噬细胞数量,并改变巨噬细胞的极化状态。自体CD34+干细胞的移植可以改善缺血组织再灌注后的功能,并降低严重肢体缺血患者的截肢率。其作用机制在于:CD34+干细胞分泌的外泌体促进小鼠下肢缺血模型血管生成。虽然临床前研究的证据表明干细胞释放的外泌体可以作为心肌修复的潜在无细胞治理剂,但是,目前将外泌体完全用作心脏修复治理剂之前还是有很多重点问题需要解决。从症状患者树突状细胞释放的外泌体中,含有各种症状细胞来源的蛋白质。
外泌体的生物发生途径主要包括三个关键的检查点:ILV的形成,阻止MVEs的降解以及MVEs和细胞膜的融合,这三个检查点都包含在内体相关的囊泡运输过程中。RABGTPase定位到特定膜结构的表面,通过招募效应因子来调节相应膜结构的囊泡运输,例如,在内体溶酶体运输网络中,RAB5调节早期内体的形成及相互融合;内体膜上RAB5到RAB7的转换调节早期向晚期内体的转变;RAB7调节晚期内体/MVEs与溶酶体的融合来降解ILVs;RAB27调节MVEs与细胞膜的对接和融合来释放ILVs形成外泌体。内吞的膜蛋白,特别是受体酪氨酸激酶家族的表皮生长因子受体,定位到内体和MVEs,通过MVEs和溶酶体融合来进入溶酶体降解,此过程受多种RABGTPases和ESCRT复合体的调控。外泌体并作为症状早期诊断技术,应用于与症状进展相关的研究。外泌体已上市项目
外泌体不只可作为疾病诊断的生物标志,而且可作为天然的药物传递载体。浙江外泌体miRNA芯片
外泌体及其携带的组分参与肝脏细胞的增殖、再生和迁移等生理过程,在肝脏疾病和肝损伤中起着重要作用,如肝病、肝硬化、肝纤维化、酒精性脂肪肝等。抑制或阻止外泌体的分泌,或许是治理肝脏疾病的一种新型策略。此外,外泌体具有稳定性和生物安全性,也可以用作载体携带改造的基因或药物,或用作疫苗诱导免疫反应杀死瘤细胞。外泌体会起到一定的保护作用,抵抗病毒的作用。与HCV类似,HBV患者的血清中分离到的外泌体同样携带HBV核酸分子和蛋白质。HBV阳性的外泌体会主动转移HBV到肝细胞中。外泌体中HBV核酸分子还会抑制RIG-1和下游信号通路,导致NK细胞功能紊乱。浙江外泌体miRNA芯片