对于二代测序的概念是什么?第二代测序(Next-generationsequencing,NGS)又称为高通量测序(High-throughputsequencing),是基于PCR和基因芯片发展而来的DNA测序技术。我们都知道一代测序为合成终止测序,而二代测序开创性的引入了可逆终止末端,从而实现边合成边测序(SequencingbySynthesis)。二代测序在DNA复制过程中通过捕捉新添加的碱基所携带的特殊标记(一般为荧光分子标记)来确定DNA的序列,现有的技术平台主要包括Roche的454FLX、lllumina的Miseq/Hiseg等。罗氏推出了二代测序仪罗氏454,生命科学开始进入高通量测序时代。2006年,随着Ilumina系列测序平台的推出,极大降低了二代测序的价格,推动了高通量测序在生命科学各个研究领域的普及。在基因组研究方面,二代测序能够分析生物体的整个基因组,促进遗传变异、基因表达和基因组结构的研究。广西二代测序流程
转录组测序的主要测序对象包括以下几类(上):
信使RNA(mRNA)
mRNA是编码蛋白质的转录本,在转录组测序中,可通过对mRNA的测序和分析,了解基因的表达水平、可变剪接情况以及基因结构变异等,从而揭示基因在特定细胞或组织中的功能和调控机制。
非编码RNA
核糖体RNA(rRNA):虽然rRNA在细胞中的含量丰富,但在转录组测序中,通常会在前期实验中通过特定的方法将其去除,以减少其对其他RNA测序的干扰。不过在某些特殊研究中,如对rRNA的转录调控机制或其与其他分子的相互作用研究时,也可能会专门针对rRNA进行测序。
转运RNA(tRNA):tRNA在蛋白质合成过程中起着重要的转运氨基酸的作用。转录组测序可以对tRNA的转录水平、修饰情况以及与其他RNA或蛋白质的相互作用进行研究,以深入了解其在基因表达调控中的功能。
微小 RNA(miRNA):miRNA 是一类长度较短的非编码 RNA,通常通过与 mRNA 的互补配对结合,抑制 mRNA 的翻译或促使其降解,从而调控基因表达。转录组测序可以发现新的 miRNA,研究其在不同生理和病理状态下的表达变化以及作用靶点等。 甘肃哪里有二代测序技术二代测序是基于PCR和基因芯片发展而来的DNA测序技术。
二代测序用于蛋白组测序面临的挑战
数据解读复杂性:二代测序产生的转录组数据量极其庞大,要从中准确挖掘出与蛋白组实际情况紧密相关的有效信息并不容易,需要运用复杂的生物信息学算法和工具进行数据分析、比对、注释等操作,而且从转录组信息到准确推断蛋白质情况还存在诸多不确定因素,比如可变剪接、翻译后调控等都会干扰解读。
定量不准确问题:虽然能通过转录组测序推测蛋白表达量趋势,但这种定量并非直接对蛋白质本身的精确测定,与实际蛋白质的真实含量存在偏差,而且不同样本间、不同实验批次间的转录组定量数据的稳定性和可比性也有待进一步提升,难以像专门的蛋白定量技术那样精细反映蛋白量的变化。
二代测序的建库步骤④四、接头连接接头选择:根据测序平台的要求选择合适的接头。不同的二代测序平台(如Illumina、IonTorrent等)有各自特定设计的接头。这些接头包含与测序平台的流动池(flowcell)表面互补的序列,用于将DNA片段固定在测序芯片上,还包含用于区分不同样本的索引序列(index)等。连接反应:使用DNA连接酶将接头与DNA片段连接。T4DNA连接酶是常用的连接酶,它可以在ATP(三磷酸腺苷)存在下,将接头的5'-磷酸基团与DNA片段的3'-羟基形成磷酸二酯键,从而将接头连接到DNA片段的两端。连接反应的条件(如温度、连接酶的用量、反应时间等)需要根据具体的实验要求进行优化,以确保较高的连接效率。二代测序也存在一些局限性,例如读长较短,数据拼接困难,在从头组装等领域的应用受限。
二代测序应用于蛋白组测序的常见方式①?
基于转录组测序间接推断蛋白信息
原理:由于蛋白质是由mRNA翻译而来,先利用二代测序技术对转录组(主要是mRNA)进行高通量测序,获得基因转录水平的信息。基于中心法则中mRNA和蛋白质的对应关系,在一定程度上可以推测出相应蛋白质可能的表达情况。例如,通过分析mRNA的表达量高低,预估对应蛋白质的丰度趋势。如果某个基因的mRNA在样本中表达量很高,那么大概率其翻译产生的蛋白质在细胞内的含量也相对较高,但这只是初步推断,因为还存在翻译后调控等影响因素。
应用案例:在研究某种植物在不同生长阶段的蛋白表达变化时,先进行转录组测序,发现与光合作用相关的一些关键基因的mRNA在植物生长旺盛期表达量***上调,后续再通过其他蛋白检测手段验证到对应的光合作用相关蛋白质含量确实增多,这就体现了通过转录组测序间接了解蛋白表达趋势的可行性。 二代测序技术的出现,使科研人员能够以相对较少的经费获得海量 DNA 序列。嘉安健达二代测序流程
二代测序读长方面比一代测序短很多。广西二代测序流程
WES测序
WES测序即全外显子组测序,是基于二代测序技术的新型基因检测方法,以下是具体介绍:
原理
人类基因组中*1%-5%的外显子区域编码蛋白质,却包含约85%的致病变异。WES测序通过序列捕获技术富集外显子区域DNA,再利用高通量测序技术对其进行测序,***经生物信息学分析和比对,检测基因突变.
流程
包括DNA片段化和文库制备、测序和数据分析两步。先将DNA切割成100-300bp的小片段,以便放入文库;然后将片段与引物匹配,引物设计靠近外子边缘以提高捕获精密度和覆盖率,经PCR扩增和链分析得到测序数据,再对比分析重建原始DNA序列.
优势
检测效率高:外子区域占比较小,测序速度快,能更快为患者提供诊断信息.
性价比高:相比全基因组测序,成本较低,且可检测大量基因突变.
覆盖度好:可***覆盖外显子及医学相关区域,包括疾病关联位点和非翻译区.
变异发现能力强:能发现低频和罕见突变,为研究复杂疾病和罕见遗传病提供有力支持. 广西二代测序流程