直到近几年,技术的发展才达到了能够控制刀片微观几何形状的水平。利用先进的加工技术,可以在刀片的切削表面制备出圆形、椭圆形或带角度的切削刃,还可以将微小的倒棱或沟槽引入刀片切削刃。随着各种创新技术的应用,人们能够在微小尺度上对刀片进行钝化处理和测量,从而使刀片的使用寿命和加工稳定性获得了极大提高。可以相当肯定地预期,今后的技术进步将进一步推动该领域的发展,并将取得更显着的成果。刀片宏观几何形状的设计与优化已是一个相当成熟的技术领域,大部分主要的刀具制造商都精通此道。钨钢锯片用于切割钢材,具有耐磨性和耐高温性能。珠海数控刀片品牌
刀片几何形状的作用一提到切削刀片的几何形状,大多数刀具制造商都会马上开始描述刀片的宏观几何形状(物理外形)。而一个近年来快速发展的研究领域——刀片切削刃微观几何形状的优化——值得予以高度重视。在宏观水平上,刀片几何形状的优化主要涉及为实现切屑控制而可能采用的比较好外形。根据不同的工件材料和加工方式,采用不同的刀片形状和角度能够提供断屑和将切屑从切削区排出的比较好结果。刀片宏观几何形状的设计与优化已是一个相当成熟的技术领域,大部分主要的刀具制造商都精通此道。浙江桃型外圆刀片刀粒快速钻刀片适用于快速钻孔,提高钻孔效率。
另一种常用的刀片涂层工艺是物相沉积(PVD)工艺。与CVD工艺相比,采用PVD技术可以沉积出更薄的涂层,从而可使切削刃更锋利,在切削难加工材料(如淬硬钢、钛合金和耐热超级合金)时可获得更优异的切削性能。在典型的刀片CVD涂层工艺中,刀片上涂覆的层涂层为氮碳化钛(TiCN)。这种涂层材料能提供优异的耐磨性,而且还具有易于与硬质合金基体粘结的优点。通常,氧化铝(Al2O3)被用作第二层涂层。这种涂层具有较好的热稳定性和化学稳定性,能保护刀片免受切削高温和冷却液中化学成分的不利影响。
进给量进给量作为影响刀具磨损的一个因素,虽然不及切削速度影响效果明显,但也不容忽视。加工中限制进给量的主要因素有机床自身强度与刚性、刀杆刀片刚性等。根据刀片槽型特点,调整进给量以得到满意的断屑状态。由于进给量加大,使加工过程中的铁屑能够及时排出,切削条件得到改善,刀片使用寿命延长。试验中可以看出,2号刀尖与3号刀尖加工数量一样,证明在合理的进给条件下,调整进给量对刀片的使用寿命影响程度不及切削速度。切削振动小刀片能够减少切削过程中的振动,提高加工稳定性。
控制硬质合金刀片特性的另一种方法是改变WC与Co的含量比例。与WC相比,Co的硬度低得多,但韧性更好,因此,减少Co含量将获得硬度更高的刀片。当然,这再一次提出了综合平衡的问题——硬度更高的刀片具有更好的耐磨性,但其脆性也更大。根据具体的加工类型,选择适当的WC晶粒尺寸和Co含量比,需要相关的科学知识和丰富的加工经验。通过应用梯度材料技术,在一定程度上可以避免在刀片强度与韧性之间进行妥协取舍。这项全球主要刀具制造商均已普遍应用的技术包括,在刀片的外层采用比内层更高的Co含量比。更具体地说,就是在刀片的外层(厚度为15-25μm)增大Co含量,以提供类似于“缓冲区”的作用,使刀片可以承受一定的冲击而不会破裂。这就使刀片的刀体可以获得采用强度更高的硬质合金成分才能实现的各种优异性能。 切断刀槽刀片适用于切割和开槽的任务。上海切槽刀片制造
切削表面光洁刀片能够实现光洁的切削表面,减少后续加工工序,提高生产效率。珠海数控刀片品牌
改变硬质合金特性简单的方法就是通过改变所用WC颗粒的晶粒尺寸。用粒度较大(3-5μm)的WC颗粒制备的硬质合金材料硬度较低,比较容易磨损;用粒度较小(<1μm)的WC颗粒则可以生产出硬度较高、耐磨性较好,但脆性也较大的硬质合金材料。在加工硬度非常高的金属材料时,采用细晶粒硬质合金刀片可能会获得理想的加工效果。而另一方面,粗晶粒硬质合金刀片在断续切削或其他对刀片韧性要求较高的加工中性能更为优越。 控制硬质合金刀片特性的另一种方法是改变WC与Co的含量比例。珠海数控刀片品牌