H13作为应用较为广且具有代表性的热作模具钢,在高温下因拥有较高的热硬性、冲击韧性、耐磨性以及切削加工性,所以通常应用于热挤压和压铸模具的制造。由于H13模具钢在服役过程中表面会受到一定程度的磨损与腐蚀,所以利用表面技术来提高H13模具钢的性能,延长使用寿命具有重要的意义。经过工研所QPQ处理后,表面硬度增加,由基体的490HV增加到1100HV,且磨损失重量不到基体的十分之一,造成该现象的原因是经过QPQ工艺处理后,CrN和Fe2~3N等高硬度、高耐磨氮化物以及低摩擦系数Fe3O4形成于H13模具钢表面,使其表现出良好的抗磨损性能。成都工具研究所有限公司利用QPQ表面处理技术,使刀具具有更好的切削稳定性。氮化盐浴QPQ热处理

工研所的《QPQ盐浴复合处理技术及其成套设备》荣获国家科技进步二等奖、四川省科技进步一等奖,同时是国家重点推广新项目,编著《QPQ技术的原理与应用》行业专著一部,参与编写制定QPQ行业标准。团队通过承接国家、省部级科研项目如《石油管用深层QPQ防腐技术的开发研究》、《深层QPQ盐浴奥氏体氮碳共渗与氧化工艺的研究与开发》、《超深层QPQ技术的研发》等,先后开发出第二代QPQ处理技术、超深层QPQ处理技术,低温QPQ处理技术并实现推广应用。表面硬化QPQ盐浴复合处理QPQ表面处理可以增加刀具的抗磨性,减少刀具更换频率。

QPQ表面复合处理技术是一种针对金属表面的处理工艺,能够有效提高材料表面硬度、耐磨性和抗疲劳性能,并且因工艺、设备简单易行而被广泛应用。利用QPQ盐中的有效组分在合金钢表面发生分解、吸附、扩散,从而改变合金钢表面化学成分及相组成以提高合金钢表面性能。然而,高温长时间的工艺条件易造成工件变形,组织粗化以及对不锈钢耐蚀性的降低。因此,工研所研发出了可在低温进行表面处理的新一代QPQ表面处理技术,化合物渗层由原有的15~20μm增加到30~40μm以上。
在工研所QPQ技术的日常生产中,QPQ盐的质量对工件表面的化合物层特性,包括深度、硬度以及疏松级别,具有至关重要的影响。其中,基盐中的氰酸根浓度是一个关键指标,其精确控制是QPQ技术质量控制流程中的重要环节。为了准确检测并调整基盐中的氰酸根含量,经典的甲醛定氮法被广泛应用。这一方法需要精心配制甲基红和亚甲基蓝的混合指示剂,以确保在加入酸碱时能够精确控制反应进程。随后,通过加入过量的甲醛,溶液中的氨态氮会被转化为氢离子。在酚酞指示剂的作用下,利用氢氧化钠对转化后的氢离子进行滴定。通过记录滴定过程中消耗的氢氧化钠量,可以精确地推算出基盐中氰酸根的浓度。这一检测与调整过程不仅确保了QPQ处理中盐的质量,也为工件表面形成高质量化合物层提供了有力保障,从而进一步提升了工件的整体性能和使用寿命。QPQ表面处理可以有效地提高刀具的抗腐蚀性能。

工研所的QPQ表面复合处理技术是一种针对金属表面的处理工艺,处理后的产品具有高硬度、高抗蚀、高耐磨、微变形、无污染等优良特性,可替代发黑、磷化、镀铬、气体渗氮、离子渗氮、渗碳等常规工艺。这是一种环保的工艺,因为它不使用有毒化学品,也不产生有害废物。该工艺还可以优化能效,减少对环境的总体影响。QPQ技术相比传统的热处理方法更加节能高效,并且QPQ技术在处理过程中实现了节能减排,对废气、废水、废渣进行中和处理再排放,使处理过程更加环保。QPQ表面处理可以改善刀具的表面质量,提高加工精度。气门QPQ替代渗碳
QPQ表面处理可以提高刀具的抗振性能,减少切削震动。氮化盐浴QPQ热处理
工研所QPQ表面复合处理技术在汽车、摩托车、纺织机械、轻化工机械、工程机械、农业机械、仪器仪表、机床、齿轮、工具、具等行业有广泛的应用前景。随着现代机器制造业的发展,对金属材料的性能提出了更高的要求,另一方面由于在环保方面的严格限制,很多老的污染环境的表面强化和防腐技术纷纷被淘汰。在这种形势下,环保的低温盐浴复合处理技术——QPQ更符合当下的需求。当年,这种技术不仅原料无毒,并且做到了全工艺过程环保,因此获得德国环保奖。同时这种新的表面强化改性技术比普通常规强化方法可以成数量级地提高金属表面的耐磨性和耐蚀性。氮化盐浴QPQ热处理