QCL激光器基本参数
  • 品牌
  • 宁波宁仪
  • 型号
  • NY-LA
  • 运转方式
  • 可调谐式
  • 激励方式
  • 电激励式
  • 波段范围
  • 中红外
QCL激光器企业商机

    复杂生态环境温室气体不同空间、时间尺度的浓度监测是了解温室气体源与汇的基础。目前适应生态环境温室气体长期连续监测的技术手段仍有待研究。可调谐半导体激光吸收光谱(TunableDiodeLaserAbsorptionSpectroscopy,TDLAS)是一种非侵入式光谱测量技术,具有高选择、高灵敏度、高分辨等特点,与目前新兴的中红外量子级联激光器(QuantumCascadeLaser,QCL)相结合,可实现分子"基频"吸收光谱测量,进一步提高检测灵敏度,达到温室气体区域环境监测需求。激光气体分析利用激光光谱技术,通过气体对特定波长激光的吸收特性来检测气体浓度。适用于检测具有特定吸收特性的气体,如甲烷、二氧化碳、一氧化碳、水蒸气、氧化亚氮和氨气。凭借其高精度、快速响应和非接触式检测的特点,激光气体分析仪在工业过程控制、环境监测、安全与泄漏检测、医疗与生命科学以及科研实验室等多个领域中得到了广泛应用。 中红外QCL-TDLAS在气体检测中具有高灵敏度、高分辨率及快速响应等优点。海南氧化亚氮QCL激光器定制

    QCL激光器的基本结构包括FP-QCL、DFB-QCL和ECqcL。增益介质显示为灰色,波长选择机制为蓝色,镀膜面为橙色,输出光束为红色。1.简单的结构是F-P腔激光器(FP-QCL)。在F-P结构中,切割面为激光提供反馈,有时也使用介质膜以优化输出。2.第二种结构是在QC芯片上直接刻分布反馈光栅。这种结构(DFB-QCL)可以输出较窄的光谱,但是输出功率却比FP-QCL结构低很多。通过大范围的温度调谐,DFB-QCL还可以提供有限的波长调谐(通过缓慢的温度调谐获得10~20cm-1的调谐范围,或者通过快速注进电流加热调谐获得2~3cm-1的范围)。3.第三种结构是将QC芯片和外腔结合起来,形成ECqcL。这种结构既可以提供窄光谱输出,又可以在QC芯片整个增益带宽上(数百cm-1)提供快调谐(速度超过10ms)。由于ECqcL结构使用低损耗元件,因此它可在便携式电池供电的条件下高效运作。 上海制造QCL激光器公司TDLAS技术采用的半导体激光光源的光谱,宽度远小于气体吸收谱线的展宽,得到单线吸收光谱。

    当红外辐射的能量与气体分子振动跃迁所需的能量相匹配时,气体分子会吸收特定波长的红外光,导致透过光的强度减弱,从而形成特征吸收峰。辐射光子的能量与分子振动跃迁的能量差相等。l分子振动伴随偶极矩的变化(红外活性)。分子在红外光谱中表现出基频、倍频和组合频吸收峰。l每种气体分子具有独特的红外吸收谱带,这种特征吸收峰可以用来识别气体种类。绝大多数气态化学物质在中红外光谱区(≈2-25µm)都显示出基本的振动吸收带,这些基本带对光的吸收提供了一种几乎通用的检测手段。光学技术的主要特征是对痕量气体的非侵入式原位检测能力。目前中红外激光在定量痕量气体检测中的应用必将代替近红外成为下一代高精度的选择。进入21世纪全球环境问题日益突出,各国都在在努力减少温室气体排放。二氧化碳(CO2)通常被称为温室气体,但其他使全球环境恶化的气体还包括二氧化硫(SO2)和二氧化氮(NO2)。此外,在气体泄漏检测和性气体的集中监控是预防灾难中激光法可以采取有效报警措施从而可以避免风险于灾难之前。激光吸收光谱法是检测微量气体的方法之一。它使用分布式反馈激光二极管(DFB-LD)检测某种气体,该二极管具有特定于该气体的光吸收波长。

    TDLAS能实现"原位、连续、实时测量",环境适应力强,易于设备的小型化。因此可以挣脱实验室的束缚,在产业应用中大展拳脚。比如大气环境在线监测、发动机效率检测、汽车尾气测量、工业过程气体实时监测等等。TDLAS利用半导体激光器的波长调谐特性,可获得被选定的待测气体特征吸收峰的吸收光谱,从而对气体定性或者定量的分析。每种气体分子的吸收峰受其他气体吸收干扰很小,所以也称之为"分子的指纹峰"TDLAS技术简单来说就是这些气体"分子指纹"的识别系统,具有很强的选择性。此外,TDLAS的检测灵敏度也是较高的,不过检出限能达到怎样的量级,就和所用光源有着很大的关系。常见的污染气体的"指纹峰"主要集中在4μm-10μm,基本是中红外的天下,所以,作为中红外激光光源的QCL,则可展现性能优势。再加之高输出功率,检出限可达到ppb,甚至ppt级别。这比传统的近红外光源所能达到的水平,整整高出了3~6个量级。 QCL的光束质量好,可以利用光的反射来设计光学长程池从而增加系统的吸收光程,提高系统的灵敏度。

    随着经济的发展,人类对于大自然的干扰和对环境的破坏愈发严重,无论是酸雨等气候灾害、亦或是全球气候变暖、还是雾霾现象频发,都严重的影响着人们的生存环境。各国科学家对环境监控都十分重视。2008年,正值北京奥运会举办之际,美国普林斯顿科研小组利用量子级联激光器搭建了开路式气体检测系统,对北京进行了空气质量评估。“HIPPO”项目(由美国国家科学基金会(NSF)和美国国家海洋和大气局(NOAA)支持)和“CalNEX”项目(由美国加州空气资源局(CARB)和NOAA支持)正在开展温室气体的相关研究工作。[2]工业监控在石油化工、金属冶炼、矿山开采等行业生产过程中,通过检测产生的相应气体的浓度可以进行进程监控,也可以监控泄露危险气体的浓度,以保障生产安全,已有技术采用μmQCL对工业燃烧排气系统中产生的NO气体进行实时检测,并使用μm的脉冲QCL对物产生的气体进行光学检测。医学应用有的疾病会造成人类呼出气体成分的异常升高,通过对呼出气体的种类和浓度进行准确的分析,可以对临床诊断和提供有价值的参考,而且不必因为使用CT等仪器而引入过多的辐射。例如,患有糖尿病、肝脏和肾脏疾病的患者呼出的气体中NH3浓度会出现异常。 0.76~25μm 为近红外,25~30μm 为中红外,30~1000 μm为远红外。重庆甲烷QCL激光器

中红外光谱是分子的基频吸收区,对痕量气体具有极高的敏感度,这使得它成为温室气体监测的理想选择。海南氧化亚氮QCL激光器定制

    红外光谱检测方法主要有使用宽带光源的傅里叶变换红外光谱(FTIR)和非分散红外光谱(NDIR)技术,以及红外激光光谱技术。与使用宽带光源的FTIR和NDIR相比,红外激光光谱由于采用高单色性的红外激光作为光源,具有更高的光谱分辨率,不需要使用额外的分光部件,易于实现仪器的小型化。另外,高功率密度激光光源更方便实现长光程检测。红外激光光谱学依据波段分为近红外光谱和中红外光谱。近红外波段工作在-μm的近红外区,相应于某些分子的“泛频”谱带。分子在这些谱带的吸收系数比中红外的基频吸收要弱得多,一般要低2-3数量级。尽管如此,由III-V族化合物制成的半导体激光由于在通信和电子工业元件方面的广泛应用,其价格相对便宜,质量、性能和输出功率都相当优越,且在接近室温工作,使其在一些浓度较高或对灵敏度要求较低的污染源排放的气体监测中得到了很好的应用,足以达到ppm的检测水平,甚至到达ppb的水平,接近中红外光谱系统检测灵敏度的1-10%。 海南氧化亚氮QCL激光器定制

与QCL激光器相关的文章
海南气体检测QCL激光器封装
海南气体检测QCL激光器封装

QCL激光器:革新光电科技,带领未来产业变革 正文: 在科技日新月异的现在,激光技术作为现代科技的重要支柱之一,不断推动着工业、医疗、通信等多个领域的发展。作为激光技术的新星,QCL激光器(Quantum Cascade Laser,量子级联激光器)以其独特的优势和前所未有的性能,正带领着一场光电科...

与QCL激光器相关的新闻
  • 重庆氨QCL激光器型号 2025-10-31 23:08:10
    在气体检测领域,许多气体分子在中红外和远红外波段具有特征吸收峰。利用QCL激光器发射的特定波长激光,可以实现对这些气体的高灵敏度检测。与传统的检测方法相比,QCL激光器具有更高的选择性和灵敏度,能够检测到更低浓度的气体,为环境监测、工业安全等领域提供了有力的技术支持。在光谱分析方面,QCL激光器可以...
  • 2. 高功率与高效率:工业应用的“能量关键”材料优化:应变补偿技术使晶体缺陷率降低60%,2024年德国Fraunhofer研究所实现30%以上的墙插效率(Wall-Plug Efficiency)。 太赫兹突破:2025年日本东京大学团队采用双金属波导结构,在2.5THz波段实现液氮温度下100...
  • 在产业合作方面,宁波艾依欧光电科技有限公司与上下游企业建立了紧密的合作关系。公司与材料供应商合作,共同研发适合QCL激光器制备的高性能材料;与设备制造商合作,共同开发先进的制备设备和工艺技术;与应用企业合作,深入了解市场需求,为产品的研发和应用提供方向。通过这种产业合作模式,公司实现了产业链的协同发...
  • 可调谐半导体激光器中红外:科技前沿的精细之光在光学科技飞速发展的***,可调谐半导体激光器中红外凭借其***性能,成为众多领域的理想之选。可调谐半导体激光器中红外具备精细的波长调谐能力。它能在中红外波段范围内,依据不同应用场景灵活调整输出波长,精细匹配各种检测与分析需求。无论是复杂的气体...
与QCL激光器相关的问题
信息来源于互联网 本站不为信息真实性负责