LPCVD设备中较少用的是旋转式LPCVD设备和行星式LPCVD设备,因为其具有结构复杂、操作困难、沉积速率低、产能小等缺点。旋转式LPCVD设备和行星式LPCVD设备的主要优点是可以通过旋转衬底来改善薄膜的均匀性和厚度分布。旋转式LPCVD设备和行星式LPCVD设备可以根据不同的旋转方式进行分类。常见的分类有以下几种:(1)单轴旋转式LPCVD设备,是指衬底只围绕一个轴旋转;(2)双轴旋转式LPCVD设备,是指衬底围绕两个轴旋转;(3)多轴旋转式LPCVD设备,是指衬底围绕多个轴旋转。降低PVD制备薄膜的应力,可以提高衬底温度,有利于薄膜和衬底间原子扩散,并加速反应过程。福州PVD真空镀膜

LPCVD设备中常用的是水平式LPCVD设备,因为其具有结构简单、操作方便、沉积速率高、产能大等优点。水平式LPCVD设备可以根据不同的加热方式进行分类。常见的分类有以下几种:(1)电阻丝加热式LPCVD设备,是指使用电阻丝作为加热元件,将电阻丝缠绕在反应室外壁或内壁上,通过电流加热反应室和衬底;(2)卤素灯加热式LPCVD设备,是指使用卤素灯作为加热元件,将卤素灯安装在反应室外壁或内壁上,通过辐射加热反应室和衬底;(3)感应加热式LPCVD设备,是指使用感应线圈作为加热元件,将感应线圈围绕在反应室外壁或内壁上,通过电磁感应加热反应室和衬底。嘉兴真空镀膜技术镀膜技术可用于制造精密仪器部件。

栅极氧化介电层除了纯二氧化硅薄膜,也会用到氮氧化硅作为介质层,之所以用氮氧化硅来作为栅极氧化介电层,一方面是因为跟二氧化硅比,氮氧化硅具有较高的介电常数,在相同的等效二氧化硅厚度下,其栅极漏电流会降低;另一方面,氮氧化硅中的氮对PMOS多晶硅中硼元素有较好的阻挡作用,它可以防止离子注入和随后的热处理过程中,硼元素穿过栅极氧化层到沟道,引起沟道掺杂浓度的变化,从而影响阈值电压的控制。作为栅极氧化介电层的氮氧化硅必须要有比较好的薄膜特性及工艺可控性,所以一般的工艺是先形成一层致密的、很薄的、高质量的二氧化硅层,然后通过对二氧化硅的氮化来实现的。
涂敷在透明光学元件表面、用来消除或减弱反射光以达增透目的的光学薄膜。又称增透膜。简单的减反射膜是单层介质膜,其折射率一般介于空气折射率和光学元件折射率之间,使用普遍的介质膜材料为氟化镁。减反射膜的工作原理是基于薄膜干涉原理。入射光在介质膜两表面反射后得两束相干光,选择折射率适当的介质膜材料,可使两束相干光的振幅接近相等,再控制薄膜厚度,使两相干光的光程差满足干涉极小条件,此时反射光能量将完全消除或减弱。反射能量的大小是由光波在介质膜表面的边界条件确定,适当条件下可完全没有反射光或只有很弱的反射光。
真空蒸发镀膜是在真空室中,加热蒸发容器待形成薄膜的原材料,使原子或者分子从表面气化逸出,形成蒸汽流。

对于典型的半导体应用,基板被放置在两个平行电极之间的沉积室中一个接地电极,通常是一个射频通电电极.前体气体如硅烷(SiH4)和氨(NH3)通常与惰性气体如氩气(Ar)或氮气(N2)混合以控制过程。这些气体通过基板上方的喷头固定装置引入腔室,有助于将气体更均匀地分布到基板上。等离子体由电极之间的放电(100–300eV)点燃,在基板周围发生启辉,有助于产生驱动化学反应的热能。前体气体分子与高能电子碰撞,然后通过气流传播到基板,在那里它们发生反应并被吸收在基板表面上以生长薄膜。然后将化学副产品抽走,完成沉积过程。LPCVD设备可以沉积多种类型的薄膜材料,如多晶硅、氮化硅、氧化硅、碳化硅等。四川ITO镀膜真空镀膜
真空镀膜过程需严格监控镀膜速度。福州PVD真空镀膜
影响靶中毒的因素主要是反应气体和溅射气体的比例,反应气体过量就会导致靶中毒。反应溅射工艺进行过程中靶表面溅射沟道区域内出现被反应生成物覆盖或反应生成物被剥离而重新暴露金属表面此消彼长的过程。如果化合物的生成速率大于化合物被剥离的速率,化合物覆盖面积增加。在一定功率的情况下,参与化合物生成的反应气体量增加,化合物生成率增加。如果反应气体量增加过度,化合物覆盖面积增加,如果不能及时调整反应气体流量,化合物覆盖面积增加的速率得不到抑制,溅射沟道将进一步被化合物覆盖,当溅射靶被化合物全部覆盖的时候,靶完全中毒。福州PVD真空镀膜