聚苯并咪唑(PBI)为各种应用提供高耐热性涂层。该聚合物具有超越其他工程材料的热性能(Tg=427℃,热降解>550℃)。与许多常见的高分子量工程聚合物不同,PBI树脂可以溶解在有机溶剂体系中,产生稳定的无腐蚀性溶液。涂料是通过简单的浇铸方法生产的。本文将演示如何将简单的PBI涂层应用于从碳钢到铜的基材上,从而实现理想的保护和高热稳定性。耐热性:PBI的芳香族双苯并咪唑结构由于其内部分子键的强度而具有优异的耐化学性和耐热性。PBI 塑料在医疗领域崭露头角,用于制造医疗器械,满足严格的卫生和性能要求。浙江PBI分析仪器测试头厂家精选
正如它们的高Tg(>400℃)所示,这些类型的聚合物具有非常坚硬的结构,可明显抵抗二氧化碳塑化,使膜即使在高温下也能保持分离性能。尽管具有这些优点,PBI聚合物在气体分离方面仍面临着一些挑战,包括由于高度的链堆积和坚硬的聚合物骨架以及脆性而导致的低H2渗透性,这使得用这种材料制造薄膜十分困难。聚合物混合、官能化、交联、前体聚合物的热重排、N取代改性和无机颗粒的加入是克服其缺点的一些方法。目前,m-PBI是独一可在市场上买到的PBI,因此,预计还需要更多的努力来普遍研究不同的膜改性技术,以改善其气体传输特性。PBI阀座价格PBI 塑料能够承受极端压力,在深海探测设备中有着重要应用。
扩散系数通常受聚合物分子结构的影响,聚合物分子结构允许特定气体分子根据其大小优先通过,这些大小通常用其动力学直径表示。H2和CO2的动力学直径分别为0.289纳米和0.33纳米,这意味着H2的扩散速率通常较高。另一方面,CO2的溶解度比H2高,因为它具有更高的冷凝性,临界温度(Tc)就表明了这一点:Tc,CO2=304K,Tc,H2=33K。由于H2的动力学直径比CO2小,冷凝性比CO2低,因此聚合物通常具有良好的H2/CO2扩散选择性,但溶解性选择性较差。
目前,化石燃料是通过蒸汽转化生产H2的主要来源(图1)。但这一工艺的缺点是会产生大量温室气体,包括副产品二氧化碳。根据原料的质量,每生产一吨H2会产生9-12吨CO2。从二氧化碳中分离出H2在热力学上是非自发的,没有外部能源的输入是不可能实现的。因此,开发高效的H2和CO2分离技术对于生产高纯度和廉价的H2至关重要。通常,二氧化碳是通过低温蒸馏或变压吸附工艺分离出来的。在低温蒸馏过程中,气体被冷却到非常低的温度,从而使二氧化碳液化并分离出来。另一方面,变压吸附法的工作原理是:在高压下,气体倾向于吸附在固体上,当压力降低时,气体被解吸。由于H2的吸附率不同于CO2,因此H2可以被净化。虽然这些方法通常能得到高纯度的H2,但它们需要消耗大量能源(需要非常高或非常低的温度),而且涉及复杂的操作和维护。PBI 塑料可用于制造汽车内饰件,既美观又具备良好的性能。
PBI紫外固化的方法是将"recon"稀释成约10%固体含量的n-n-二甲基丙烯酰胺(DMAA),再加入5%的Irgacure2022相对PBI聚合物,涂布在玻璃上,然后在60秒内进行紫外固化,接着在250摄氏度下进行5分钟的热放气。DMAA可用于紫外线固化后再进行热固化的厚涂层。紫外线引发剂包括常见的基于自由基的系统,如Irgacure2022(BAPO/∝-羟基酮)。蒸发涂层基材的厚度与紫外线固化涂层的热稳定性相对应。UV固化PBI涂层显示电气性能(左)和附着力测试(右)。电气结果表明I-V图下部区域的曲线电流非常低(高介电值)。附着力测试全部通过了修改后的ASTM方法,这是UV固化PBI涂层的常见观察结果。以其良好的透光性,PBI 塑料可用于制造光学镜片等光学元件。PBI低温密封圈厂家
因其低热膨胀系数,PBI 塑料可用于光学仪器,保证光学元件的精度。浙江PBI分析仪器测试头厂家精选
PBI与聚丁烯:高温与高性能的秘密。在探索高温加热板的世界中,我们发现了两种令人瞩目的材料:PBI和聚丁烯。首先,PBI(聚苯并咪唑)是一种高性能聚合物,以其突出的高温稳定性和耐热性而闻名。它不能直接用于树脂,也不能通过传统的热塑性塑料加工方法进行加工,而是需要采用高压烧结法。PBI可以制成纤维、特殊形状的物品和成品,甚至用于复合浸渍溶液。PBI的主要应用领域包括合成纤维,用于制造过滤器、涂层和高温防护材料。用PBI制成的零件通常用作绝缘体、插座和密封垫,展现了其在电子和电气行业中的重要性。浙江PBI分析仪器测试头厂家精选