目标跟踪基本参数
  • 品牌
  • 慧视科技
  • 型号
  • 可咨询
  • 输出信号
  • 数字型,定制
  • 制作工艺
  • 集成,薄膜,陶瓷,可定制
  • 材质
  • 可定制
  • 材料物理性质
  • 导体,磁性材料,定制
  • 材料晶体结构
  • 定制
  • 加工定制
目标跟踪企业商机

近年来,伴随着大数据时代的来临,深度学习在计算机视觉的许多问题,如图像识别、人脸识别、目标检测领域都取得了巨大成功,与传统的目标检测算法相比,深度学习算法具有更好的表达能力、更高的准确性,深度神经网络在模型架构和学习过程上与人类认识和感知世界的神经系统类似。目标检测和识别现在是视觉方向热门的研究课题,也一直是工业界重点研究的对象。近几年,业内出现了各种各样的检测框架,不断刷新各种性能指标,然而受限于工业应用的性能与成本要求,效率-精度平衡的检测框架成为了优先。团队在该方向进行了一系列的优化设计,创建了全新的移动端实时检测框架,与其他流行的检测框架相比,该模型架构在准确性和延迟之间实现了更好的权衡,基于选用的硬件平台,可以实现性能优良的移动端实时物体检测。工程师以RK3588核心板为基础进行定制开发,让摄像头更加智能高效,能够输出高清流的图像视频。哪里有目标跟踪市场报价

目标跟踪

目标遮挡是导致跟踪失败的一个重要原因,也是实现长程目标跟踪的关键问题。跟踪任务从始至终都只跟踪一个目标,一旦目标被遮挡,则会极大程度上影响跟踪准确度,甚至导致跟踪失败。因此,当面临遮挡问题时,目标跟踪任务的要求更加严格。目前,目标遮挡可以分为两种情况:部分遮挡和完全遮挡。部分遮挡意味着在图像中还存在部分目标,可以通过对这部分的目标进行判断进而确定目标的位置;完全遮挡则是在图像中找不到目标,可能发生在有大的物体完全遮住了跟踪目标。慧视光电的图像处理板具有抗遮挡能力。重庆比较好的目标跟踪成都慧视的跟踪版是国产化的!

哪里有目标跟踪市场报价,目标跟踪

无人驾驶汽车是计算机视觉技术应用的重要领域。在自动驾驶过程中,通过对车道线、前后方车辆和行人等目标的准确识别,为更高级的行为选择、障碍物规避以及路径规划功能提供了基础,这其中的一项关键技术就是目标跟踪。由于实际路况极为复杂,基于传统目标检测的辅助驾驶技术性能难以得到大幅提升。随着技术的发展,采用深度学习可以直接学习和感知路面和道路上车辆的特征,经过一段时间的正确驾驶过程,便能学习和感知实际道路情况下的相关驾驶技能,无需再通过感知具体的路况和各种目标,大幅提升了辅助驾驶算法的性能。

人工智能的三个技术关键点:硬件平台、软件功能算法、底层算法异构平台。硬件平台因为要支撑深度学习等大规模并行计算的需要,这就对AI芯片的CPU、GPU要求较高以做到更好的储备数据、加速计算过程,在做好AI芯片选型后,只需要结合市场的需求做好电气接口即可。软件应用算法随着技术的积累,大部分厂家基本掌握了应用层面的算能,提升空间短期内不会出现大的跳跃。底层软件异构平台承载着硬件的选型、应用软件的算能,异构平台设计的优劣直接影响着硬件的设计水平及算能的实现能力。目前很多厂商采取使用公用软件平台,快速的实现软件功能,在AI芯片更新或者替换时,需要重新设计开发,消耗大量的人力、物力、时间。慧视光电开发的慧视AI图像处理板,采用了国产高性能CPU。

哪里有目标跟踪市场报价,目标跟踪

慧眼智能双光AI成像组件是成都慧视光电技术有限公司在其研发的慧眼智能图像处理板基础上,集成了非制冷红外、可见光相机于一体的智能检测、识别产品,根据客户的需求可搭配不同波段的相机产品。应用场景:该款产品可广泛应用于森林防火、电站检测、安防监控、智慧化工业检测、机载吊舱、车载辅助、低空安防等各种光电观瞄平台。目标跟踪:1.配合目标检测,支持自主目标跟踪。2.支持手动指定目标进行跟踪。3.目标跟踪算法具有抗遮挡能力。4.目标跟踪算法具有适宜目标尺度变化的能力。5.输出目标跟踪信息。无人机可能会受到敌方势力或者强风等因素干扰,造成不同幅度的振动,从而影响板卡能否正常完成任务。国产目标跟踪价格信息

RV1126搭载AI智能算法,实现目标识别与跟踪。哪里有目标跟踪市场报价

在无人机应用方面,目标跟踪技术可以作为无人机视觉处理模块,实现对需要拍摄的目标进行持续跟踪,使焦点始终保持在目标上,从而达到更好的拍摄效果。目前,基于深度学习的视觉跟踪技术已经成为无人机视觉跟踪中重要的技术组成部分。成都慧视光电技术有限公司运用自身的图像算法和硬件平台开发优势,推出了系列国产化图像检测与跟踪板卡、全国产化RK3399PRO处理板、全国产化RV1126处理板等产品,全国产化RK3399PRO处理板因为其强大的硬件平台叠加基于行为的算法,能够有效的应对无人机的迫切需求。哪里有目标跟踪市场报价

与目标跟踪相关的文章
安全目标跟踪参考价格
安全目标跟踪参考价格

YOLO单卷积神经网络在一次评价中直接从全图中预测多个boundingboxes和类概率,在全图上训练并直接优化检测性能,同时学习目标的泛化表示。然而,YOLO对边界框预测施加了严格的空间约束,限制了模型可以预测的相邻项目的数量。成群出现的小物件,如鸟类,对于此模型也同样有问题。fasterR-CN...

与目标跟踪相关的新闻
  • 辽宁移动目标跟踪 2024-12-23 16:03:26
    目标跟踪是计算机视觉研究领域的热点之一,并得到广泛应用。相机的跟踪对焦、无人机的自动目标跟踪等都需要用到了目标跟踪技术。另外还有特定物体的跟踪,比如人体跟踪,交通监控系统中的车辆跟踪,人脸跟踪和智能交互系统中的手势跟踪等。简单来说,目标跟踪就是在连续的视频序列中,建立所要跟踪物体的位置关系,得到物体...
  • 安徽目标跟踪解决 2024-12-23 04:03:27
    随着社区等安防向着智能化的进一步发展,越来越多的领域对传统意义上的视频监控提出了更加的严格要求,虽然传统监控系统已经可以满足人们“眼见为实”的要求,但同时这种监控系统要求监控人员不得不始终看着监视屏幕,获得视频信息,通过人为的理解和判断,才能得到相应的结论,做出相应的决策。因此,让监控人员长期盯着众...
  • 宁夏目标跟踪联系方式 2024-12-23 14:03:16
    目标跟踪算法具有不同的分类标准,可根据检测图像序列的性质分为可见光图像跟踪和红外图像跟踪;又可根据运动场景对象分为静止背景目标跟踪和运动背景下的目标跟踪。由于基于区域的目标跟踪算法用的是目标的全局信息,比如灰度、色彩、纹理等。因此当目标未被遮挡时,跟踪精度非常高、跟踪非常稳定,对于跟踪小目标效果很好...
  • 由于侵入的目标的形状和颜色等特征是难以固定的,再加上监控的场景,即背景往往比较复杂,只利用一个单帧图像就找出移动的目标是非常困难的。然而,目标的运动导致了其运动时间内,监控场景图像的连续变化,所以,使用图像序列分析往往是比较有效的,而且适合于低信噪比的情况。由于监控系统通常监控的视野比较大,系统设置...
与目标跟踪相关的问题
信息来源于互联网 本站不为信息真实性负责