YOLO单卷积神经网络在一次评价中直接从全图中预测多个boundingboxes和类概率,在全图上训练并直接优化检测性能,同时学习目标的泛化表示。然而,YOLO对边界框预测施加了严格的空间约束,限制了模型可以预测的相邻项目的数量。成群出现的小物件,如鸟类,对于此模型也同样有问题。fasterR-CN...
随着社会经济的发展,近年来汽车保有量持续上涨,同样的产生的汽车事故也越来越多。夜间行车的事故率要比白天高一半以上,因为夜晚行驶车辆时,光线不足、可视范围减少,会让驾驶人难以做出准确的判断,一旦有突发情况,驾驶人很难及时控制车辆,容易发生事故。针对这一情况,建议使用慧视光电的“慧眼”双光监测设备,可实现白天黑夜24小时监测车辆外界情况,利用红外线技术将黑暗变得如同白昼,使驾驶员在黑夜里看得更远更清楚,可及时识别外来车辆或则路面情况(积水识别、路面裂缝识别等),及时告警提示驾驶人员,提高驾驶安全性。成都慧视的RK3588跟踪板卡很可以。山东无源目标跟踪
智慧城市时代,城市拥有的数据资源越来越多,如何将海量数据资源有效利用并用于提升城市管理能力和管理效率是城市管理者所关注的。而对城市数据资源的有效利用和共享与中台思想不谋而合,因此未来中台将是城市空间管理的有效方法。就中台而言:部分更底层的、通用性强的、可复用的组件或模块可以完全确定,将其封装后可插拔重复使用且具有一定通用性,即形成了标准化产品;其他部分功能则需要根据实际应用场景与需求进行定制化。故就未来而言,未来城市管理平台系统将趋于产品化和服务化,并融合在业务中。成都慧视光电技术有限公司专注于图像处理领域,在人工智能算法、激光雷达、红外图像处理、目标识别与追踪、窄带传输等方面积累了丰富的经验和成果。研发团队由行业沉淀了十余载的人员组成,并与南京大学、电子科技大学等学府实验室达成深度合作,公司致力于成为基于图像的智能方案提供商。数据目标跟踪工程成都慧视光电技术有限公司推出基于全国产化RK3588板的高性能图像跟踪板卡。
近年来我国相继出台光伏行业扶持政策,经过多年发展革新,现已经临近产业爆发高峰点。国家能源局发布的《太阳能发展“十三五”规划》中提出,2020年,我国光伏发电飞速发展。现在是光伏发展的比较好时机,同时也意味着,光伏行业距离激烈市场竞争越来越近。慧视光电根据行业对设备数据监控、报警机制及故障流程等实际业务需求,提出巡检及日常管理设备监控解决方案,并为其实现实时视频可视化管理与运行状态数据显示功能、并设置报警机制、故障反馈、调查、分析、检修流程。
每年全球因为交通事故死亡人数约一百万人左右,还有几千万人因此而受伤或致残,而造成交通事故的主要原因是醉酒带来的反应迟钝、超速带来的制动延迟等,如何有效的避免此类问题发生,尽量减少人为因素是做好安全出行的优先。随着科技的发展,很多车辆开始加入了辅助驾驶甚至自动辅助驾驶功能,以便在遇到紧急事情发生时,能够让车辆自身紧急制动或者避让的措施来减少事故的发生,这无疑相当于给车辆装上“火眼金睛”,这个“火眼金睛”是安全驾驶至关重要的技术,“火眼金睛”是怎么炼成的呢?通过安装在车辆上的国产化图像检测与跟踪板卡,对车辆前方的影像进行智能分析,准确检测、识别出人、车并进行标注,同时反馈给车辆的“大脑”,从而系统联动做出必要的规避措施。成都慧视光电技术有限公司推出基于全国产化RV1126板的高性能图像跟踪板卡。
目标遮挡是导致跟踪失败的一个重要原因,也是实现长程目标跟踪的关键问题。跟踪任务从始至终都只跟踪一个目标,一旦目标被遮挡,则会极大程度上影响跟踪准确度,甚至导致跟踪失败。因此,当面临遮挡问题时,目标跟踪任务的要求更加严格。目前,目标遮挡可以分为两种情况:部分遮挡和完全遮挡。部分遮挡意味着在图像中还存在部分目标,可以通过对这部分的目标进行判断进而确定目标的位置;完全遮挡则是在图像中找不到目标,可能发生在有大的物体完全遮住了跟踪目标。慧视光电的图像处理板具有抗遮挡能力。工程师以RV1126核心板为基础进行定制开发,让摄像头更加智能高效,能够输出高清流的图像视频。江西目标跟踪批发价格
RK3588作为工业级图像处理板能够进行大量的目标识别信息处理。山东无源目标跟踪
成都慧视光电技术有限公司的RK3399处理板是采用的国内AI智能开发板OrangePI4,植入慧视光电自主研发的智能图像算法,基于输入的可见光或者红外的视频流,可实时对目标进行自主检测、识别或者手动锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。双光测温组件是基于RK3399图像处理板,推出的一款用于高温人群体温筛查的组件产品。基于该组件,可快速展开各类用户终端产品的集成设计。其中可见光模组和红外测温模组,分别通过配套提供的FFC软排线与RK3399图像处理板连接。山东无源目标跟踪
YOLO单卷积神经网络在一次评价中直接从全图中预测多个boundingboxes和类概率,在全图上训练并直接优化检测性能,同时学习目标的泛化表示。然而,YOLO对边界框预测施加了严格的空间约束,限制了模型可以预测的相邻项目的数量。成群出现的小物件,如鸟类,对于此模型也同样有问题。fasterR-CN...
四川快速目标识别远程协助
2024-12-31云南低延迟视频技术
2024-12-31四川行业用AI智能科技
2024-12-31安徽低空安防图像识别模块定制方案
2024-12-31江苏低压线目标识别经验丰富
2024-12-31云南低空安防图像识别模块厂家
2024-12-31江苏专业目标识别型号
2024-12-31西藏窄带高清音视频视频技术
2024-12-31河南应急救援视频压缩与传输系统
2024-12-31