YOLO单卷积神经网络在一次评价中直接从全图中预测多个boundingboxes和类概率,在全图上训练并直接优化检测性能,同时学习目标的泛化表示。然而,YOLO对边界框预测施加了严格的空间约束,限制了模型可以预测的相邻项目的数量。成群出现的小物件,如鸟类,对于此模型也同样有问题。fasterR-CN...
成都慧视光电技术有限公司推出的国产化图像检测与跟踪智能处理板——RV1126处理模块,具有以下特点①处理模块使用瑞芯微的RV1126芯片,RV1126是一个高性能、低功耗的视觉处理SOC,具有丰富的外设和功能特性,尤其适合AI相关的应用;②4核CortexA7,每个核具有独自的NEON和FPU,每个核具有32KB的一级数据缓存和一级指令缓存,4核共用512KBL2缓存;③两个MIPICSI/LVDS/SubLVDS视频输入接口,每个接口支持4lane,MIPICSI每个lane的比较大速率为2.5Gbps/lane,LVDS比较大速率为1Gbps/lane;④ISP支持的最大分辨率为4416x3312;⑤支持H264,H265视频编码,比较大支持4096x2304@30fps;⑥神经处理单元(NPU),运算能力达到2Tops,支持INT8和INT16;⑦包含一个RISCV微控制器成都慧视光电技术有限公司推出基于全国产化RK3399PRO板的高性能图像处理板卡。信息化目标跟踪解决
AI智能图像分析作为人工智能的重要组成部分,随着人工智能的研究,也逐步被广泛应用于各种基于深度学习算法的应用领域中,比如无人驾驶、医疗系统等等。成都慧视光电技术有限公司为了满足行业的应用需求,在以国内智能芯片RK3399、RK3399Pro、RV1126的基础上推出了一系列自主研制的全国产化的图像处理板、全国产化RK3399PRO处理板、全国产化RK1126处理板等产品,支持基于深度学习算法的多种目标的实时检测,产品已广泛应用于监狱、看守所、校园安保、银行、边海防监控、园区周界等场景。河南自主可控目标跟踪推荐使用慧视光电的跟踪板卡。
目标跟踪是计算机视觉的一个重要分支,其利用视频或图像序列的上下文信息,对目标的外观和运动信息进行建模,从而对目标运动状态进行预测并标定目标的位置。目标跟踪融合了图像处理、机器学习、比较好化等多个领域的理论和算法,是完成更高层级的图像理解(如目标行为识别)任务的前提和基础。随着计算机处理能力的飞速提升,各种基于目标跟踪的民用和***系统纷纷落地,广泛应用于智能视频监控、智能人机交互、智能交通、视觉导航、无人驾驶、无人自主飞行、战场态势侦察等领域。并结合多传感器技术,提高了对城市的主动监视和对战场的态势感知能力。能够实现多目标跟踪并完成对目标行为的异常检测。开发出了能在复杂场景下的行人跟踪和行为理解,以及可用于监测、引导交通流量并实现异常预警的公共交通管理系统。
传统的监控系统需要依靠人对得到的监控视频进行分析,耗时耗力。智能监控系统可以通过目标跟踪、识别等技术自动实现对目标场景的分析和异常检测。随着深度学习在计算机视觉领域的快速发展,智能视频分析技术已经成为安防企业竞争的关键,相关技术已经达到非常高的精度。传统安防技术更多的是关注事后查证的有效性,但随着高清摄像机的普及,如何利用这些资源使设备“活”起来,已经成为越来越多安防企业发展的重点。有了视频分析,就可以及时发现视频中的异常情况,从而及时做出反应,减少损失。全国产化处理板哪家好?
在城市空间管理中,AI中台基于人工智能算法与视频技术组件,深入道路交通、工作学习、生活娱乐、城市环境、互联网信息等城市空间,形成智慧交通、客流管理、特定岗位管理、城市环境治理、互联网内容安全等一系列产品模块,应用于车辆及行人违章行为自动识别抓拍和报警推送、公共场所及大型活动区域等地大规模客流疏导管理、服务窗口及工业岗位违规行为监督管理、网络暴恐内容及敏感内容审核等多种场景,实现自动识别、智能分析与辅助决策等功能。RV1126图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标跟踪及跟踪算法。如何目标跟踪型号
智能图像跟踪在机场周界中的应用。信息化目标跟踪解决
近年来我国相继出台光伏行业扶持政策,经过多年发展革新,现已经临近产业爆发高峰点。国家能源局发布的《太阳能发展“十三五”规划》中提出,2020年,我国光伏发电飞速发展。现在是光伏发展的比较好时机,同时也意味着,光伏行业距离激烈市场竞争越来越近。慧视光电根据行业对设备数据监控、报警机制及故障流程等实际业务需求,提出巡检及日常管理设备监控解决方案,并为其实现实时视频可视化管理与运行状态数据显示功能、并设置报警机制、故障反馈、调查、分析、检修流程。信息化目标跟踪解决
YOLO单卷积神经网络在一次评价中直接从全图中预测多个boundingboxes和类概率,在全图上训练并直接优化检测性能,同时学习目标的泛化表示。然而,YOLO对边界框预测施加了严格的空间约束,限制了模型可以预测的相邻项目的数量。成群出现的小物件,如鸟类,对于此模型也同样有问题。fasterR-CN...
山西数据目标识别系统
2025-01-02福建智慧养老AI智能烟雾识别
2025-01-02吉林网络目标检测价格信息
2025-01-02甘肃哪里有目标识别郑重承诺
2025-01-02河北专业目标识别创意
2025-01-02河北低压线目标识别系统
2025-01-02湖北网络目标识别情况
2025-01-02工业目标检测批发商
2025-01-02山西如何目标识别解决方案
2025-01-02