部署机器学习模型,也称为模型部署,简单来说就是将机器学习模型集成到现有的生产环境中,在该环境中,模型可以接受输入并返回输出。部署模型的目的是让其他人(无论是用户、管理人员还是其他系统)可以使用训练有素的机器学习模型进行预测。模型部署与机器学习系统架构密切相关,机器学习系统架构是指系统内软件组件的排列...
实现这些功能的技术中,图像处理基于AI图像处理板这一传感器。板卡具备快速图像处理识别的硬件能力,植入相应的AI算法,无人机就相当于装上了“智慧眼”,而且这个“智慧眼”居于高空,能够在一个定点,俯瞰大范围,实时监控货物的存放状态。远程控制技术基于网络通信,通过和图像处理板的结合,能够实现低延时低带宽的图像传输处理。在实际落地应用中,可以采用成都慧视开发的高性能图像处理板,其中RV1126系列的Viztra-LE026图像处理板,就是无人机的完美搭子。这款图像处理板具备2.0TOPS的算力,能够根据无人机型号进行接口定制,整体尺寸在40mm×40mm×10mm左右(核心板+接口板),小巧的外形即便是小型无人机也能够装上。此外,板卡整体功耗在4W左右,不会过多增加无人机的负担。SpeedDP能够减少机械式的图像标注工作。宁夏安全图像标注应用

此前,九号电动车的自平衡技术一次次刷新人们的认知,而其中一款探索版车型,甚至加入了智能摄像头,能够识别行人、障碍物,自动规划行驶路线,达成自动驾驶的目的。很多人好奇这种怎么做到的,其实很简单,车辆内部摄像头安装了具备图像处理的传感器。这种传感器就是图像处理板,这类AI板卡在目标识别算法的赋能下,就能够对视野范围的物体进行AI分类识别,从而帮助车辆进行避障。像成都慧视开发的高性能AI图像处理板Viztra-HE030,采用的是RK3588开发而成,凭借其工业级的性能,6.0TOPS的算力,就能够在车辆行驶过程中的复杂环境下进行周边环境的快速AI识别分类。当然,算法的能力也十分关键,由于车辆行驶环境的不断变化,算法面临的识别画面也不断变化,如何精细的进行识别,关系到车辆的行驶安全。四川图像标注产品SpeedDP能够提升图像标注的效率。

虽然现在各种公共交通已十分便捷,但是仍然存在许多无证、无资质的车辆,这些车辆无视交通法规,所以超速超载,俨然成为公路安全一大隐患。例如在车站出入口,经常会有很多人进行拉客,虽然说是坐满就走,但是为了利益比较大化,超员那是常有的事。再比如暑期来临,各种培训班、托儿所成批出现,也由此滋生了许多“黑校车”,为了尽可能的节约成本,常常让所有学生挤在一辆车内,严重危及孩子安全。要想避免事故的发生,则需要警民合作,路人积极提供线索,而管理部分则迅速行动,对车辆进行追踪拦截。
此外,慧视光电SpeedDP深度学习算法开发平台支持本地化服务器部署,数据敏感或对数据有保密需求的用户再也无需担心数据信息泄露的问题。目前慧视光电SpeedDP深度学习算法开发平台主要提供目标检测算法的开发功能,不同的用户可针对自己的业务场景进行AI算法的定制化开发以及算法模型的快速迭代优化。随着芯片性能的提升,跟踪设备的发展趋势是生成式人工智能也会在图像跟踪板上得到应用,使得识别率达到极大的提升,相关配套的整体设备性能也会得到质的提升。传统的人工标注效率很低。

无人机能够通过高空拍摄快速获取大范围、多角度的地面信息。但是传统的摄像头只能获取视频数据,对于许多需要进行数据分析的行业来说显然不够智能化,从无人机视频数据中快速获取提炼大量有价值的信息,不仅能够提升工作效率,还能够减少不小的成本支出。这就是无人机的AI识别能力。通过识别算法,在无人机工作时就对目标范围进行AI检测识别,从而提炼所需信息。这就需要对无人机进行智能化改造,可以在传统无人机吊舱中植入成都慧视开发的高性能AI图像处理板,如利用RK3588深度开发而成的Viztra-HE030图像处理板,6.0TOPS的算力能够快速处理无人机识别到的复杂画面信息,这样就有了硬件基础,剩下的就需要对自身算法进行不断优化提升。SpeedDP提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。北京多系统适配图像标注
图像标注在目标检测中很重要。宁夏安全图像标注应用
机器视觉具有定位、识别、测量与检测四大功能,在工业领域中,机器视觉可以快速、准确地获取大量信息,并且易于自动处理,因此在质量检测方面有着广泛应用。而AI图像处理板只是实现这些功能的关键传感器。目前,国内的机器视觉领域已经形成了庞大的产业链,从以镜头、工业相机、图像捕捉与处理系统等软硬件研发制造组成的上游环节,到智能化机器视觉集成组装为主的中游环节,都非常成熟。AI的不断发展,为机器视觉不断拓展应用场景,而慧视AI图像处理板的高性能正好成为该领域的融洽解决方案,相信在不远的将来,会有越来越多的行业知道AI图像处理板将为他们带来巨大的便利。宁夏安全图像标注应用
部署机器学习模型,也称为模型部署,简单来说就是将机器学习模型集成到现有的生产环境中,在该环境中,模型可以接受输入并返回输出。部署模型的目的是让其他人(无论是用户、管理人员还是其他系统)可以使用训练有素的机器学习模型进行预测。模型部署与机器学习系统架构密切相关,机器学习系统架构是指系统内软件组件的排列...
安徽行业用AI智能应用
2026-02-01
重庆目标跟踪图像识别模块AI智能
2026-02-01
贵州快速图像标注什么价格
2026-02-01
新疆专业图像标注大概价格
2026-02-01
云南双光成像图像识别模块设备
2026-02-01
广西哪里有图像标注技术
2026-02-01
四川哪里有图像标注优势
2026-02-01
山西RK3399主板图像识别模块算法定制
2026-02-01
甘肃自主可控图像标注有哪些
2026-02-01