早先的磁场传感器,是伴随测磁仪器的进步而逐步发展的。在众多的测磁方法中,大都将磁场信息变成电讯号进行测量。在测磁仪器中“探头”或“取样装置”就是磁场传感器。随着信息产业、工业自动化、交通运输、电力电子技术、办公自动化、家用电器、医疗仪器等等的飞速发展和电子计算机应用的普及,需用大量的传感器将需进行测量和控制的非电参量,转换成可与计算机兼容的讯号,作为它们的输入讯号,这就给磁场传感器的快速发展提供了机会,形成了相当可观的磁场传感器产业。霍尔电流传感器内部的电阻值、灵敏度和噪声都会发生变化,从而导致零点漂移。南京高线性度电流传感器联系方式
电流传感器根据不同的分类形式具有不同的分类方法,其根据工作原理的不同可分为电子式电流互感器、电磁式电流互感器和分流器,其中电子式电流互感器包括变频功率传感器、罗柯夫斯基电流传感器、霍尔电流传感器等,较电磁式电流传感器而言具有更宽的传输频带、更小的尺寸、更轻的重量、更小的二次负荷容量等,逐步占据电流传感器的大部分市场。霍尔电流传感器基于霍尔效应,利用霍尔磁平衡原理来对各种类型的电流实现测量,首先在霍尔元件的控制电流端输入被测电流,其次在霍尔元件平面的法线方向施加磁场(强度为B),然后便会在霍尔元件的输出端产生一个电势,称为霍尔电势(方向垂直于电流方向和磁场方向),该电势的波形与输入电流一致,因此可以精确地反映出被测电流的变化情况。兰州动力电池测试电流传感器联系方式用电设备都是通过电流传感器来实现测量、检测、保护、反馈控制等功能。
光纤电流传感器的工作原理是利用磁光晶体的法拉第效应。 根据法拉第效应,当一束偏振光通过某些透明物质(如石英晶体)时,如果该偏振光的光振动方向与外磁场方向不垂直,则该偏振光的偏振方向将会发生旋转,旋转角度与穿过光路的光的传播长度和磁场强度有关。 具体到光纤电流传感器,其工作原理是当有电流通过导线时,导线周围会产生磁场。这个磁场会对入射到传感器的光进行旋转。旋转角度与电流强度有关,因此可以通过测量旋转角度来得到电流强度。
光伏发电系统中漏电流的检测存在以下问题:(1)漏电电流是毫安级,而负荷电流是安培级,在数量级上相差很大,并且二者在电流传感器中同时存在。这使得漏电电流的检测与绝缘诊断领域和电气测量技术领域内的一般电流测量方法不同,并且漏电电流传感器需要满足更高的灵敏度和抗干扰性要求。然而,在大负荷电流时,载流导体周围产生很强的磁场,会影响到剩余电流传感器的输出特性,产生“假剩余电流”,可能导致漏电保护器的误动作;(2)光伏发电系统中存在严重的高频杂散磁场,也导致电流传感器的性能受到很大的影响。上述两点使得漏电电流的准确检测与识别更加困难。通过现有技术方案分析可知,现有的漏电电流传感器并不能很好地应用于光伏并网发电系统中。原创寄生参数平衡技术,极大的拓展的电流传感器的工作带宽;
磁通门技术原理是利用磁铁的磁场来控制电路中的电流,磁铁的磁场强度来决定信号的通断。磁通门由一块磁铁和一个电路组成,当磁铁被激励时,电路中的电流将会流动,使信号通过,而当磁铁不激励时,电路中没有电流,信号就会被阻断。磁通门不仅能够控制信号的通断,还能够控制电路中的电流大小,从而控制信号的幅度。磁通门是一种磁场测量元件,可用于电流测量中,精度较高。磁通门技术发展历史起始于1928年,在1936年,Aschenbrenner和Goubau称达到了0.3nT的分辨率。在第二次世界大战中,用于探潜的磁通门传感器有了较大的发展。用电流传感器作为电气设备绝缘在线检测系统的采样单元,已得到应用。线性度:是电流传感器输出电信号与被测电流之间的关系。线性度通常用百分比来描述。辽宁高频电流传感器厂家
电流传感器的技术参数主要包括精度、带宽、灵敏度、线性度等。南京高线性度电流传感器联系方式
积分反馈式电流传感器主要基于激励线圈感应电流的积分值反馈控制次级电流值,然后在磁芯中形成零磁通状态,测量此时的电流值Is与匝数Ns的乘积即为被测电流值。为了使磁芯工作在零磁通状态,电流传感器中加入了次级线 圈并且此线圈必须通入一个合适的电流以保证磁芯的零磁通状态,而这个值与被测电流有关。磁芯零磁通状态是通过饱和电感的电感值来体现的。当无外界电流时,通过饱和电感的电流积分值为零。在这种情况下,如果在激励线圈上加载一个对称的交流方波电压,那么激励线圈中的电流将会产生对称的交流电。而当存在外界电流时,同样加载交流方波电压,此时激励线圈产生的电流不再对称,这一电流变化主要取决于被测 电流的值及其方向。南京高线性度电流传感器联系方式