假设1:Im<<IC,Ith<<IC,βIp<<IC,对ln函数进行化简,简化了TP与TN表达式。假设2:在线性区A激磁电感L远大于饱和区B、C激磁电感l,因此τ2>>τ1,略去了τ1项时间,得到简化的激磁电压周期公式。假设3:βIp<<IC,略去了βIp项,终得到简化的线性模型。为了达到理想的激磁电流平均值与一次电流之间的线性关系,三条假设需要完全满足。因此为了更好地满足这些假设条件以提高自激振荡磁通门电路的线性度可以采取的措施有:(a)选取高磁导率μr,低矫顽力Hc,高磁饱和强度BS的磁芯材料作为铁芯,以保证铁芯C1磁化曲线的高度非线性,以满足假设2。通过测量电流,可以了解电路中的能量消耗、电阻、电容和电感等参数。宁波分流器电流传感器案例
其中一次绕组 WP 中流过一次电流为 IP ,匝数为 NP 。一次电流绕组穿过环形铁芯 C1 及 C2 的中心,铁芯 C1 上均匀绕制有匝数为 N1 的激磁绕组 W1 ,铁芯 C2 上均匀绕制 有匝数为 N2 的激磁绕组 W2 。同时环形铁芯 C1 及 C2 上同时均匀缠绕有匝数为 NF 的反 馈绕组 WF 。反馈绕组 WF 中串接终端测量电阻 RM 。其中新型交直流电流传感器的电流 检测模块即零磁通交直流检测器包括环形铁芯C1 和C2、比较放大器U1、反向放大器U2 、 采样电阻 RS1 、分压电阻 R1 和 R2 。低通滤波器 LPF 及高通滤波器 HPF 构成新型交直流 电流传感器的信号处理模块。图中 PI 比例积分放大电路构成新型交直流电流传感器的 误差控制模块。图中 PA 功率放大电路配合反馈绕组 WF 及终端测量电阻 RM 构成构成新 型交直流电流传感器的电流反馈模块。北京电流传感器单价这种复杂电流波形可能包含直流、低频以及高频交流。
配网用电流传感器多用于电能计量, 其主要性能指标为其交流计量误差[60, 61]。实验 时在全量程范围进行交流性能测试, 根据《测量用电流互感器检定规程》,所研制的 500 A 交直流电流传感器, 交流测试范围为 0~600 A,实验时直流电流源输出为 0 ,直流绕 组断开,通过调节升流器旋钮调节一次侧交流大小, 测试了正反行程 5%、20%、100% 、 120%额定电流下新型交直流传感器比差角差。红色曲线为 0.05 级交流电流互感器比差和角差误差限值曲线, 黄色曲线为反行程交流比差和角差误差曲线, 黑色曲线为正行程交流比差和角差误差曲 线。
当测量交直流电流时,环形铁芯C1处于正向激磁状态,在采样电阻RS1上将产生正比于一次交直流电流的有用低频信号VL1,包括直流分量信号Vdc及工频交流信号Vfac,同时也会产生高频无用交流分量VH1。由于环形铁芯C2激磁状态与铁芯C1完全相反,因此在采样电阻RS2上可以检测到反向的低频信号VL2及反向的无用交流分量VH2。对于环形铁芯C2而言,其与环形铁芯C1反相端支路对称,而缺少正向端电路部分,因此环形铁芯C2在振荡过程中激磁电流的平均电流与一次侧交直流电流线性关系较差,低频信号VL2为无用低频信号。根据上述分析,可以得到合成信号VR12表达式如下:VR12=VR+VR=VL1+(VH1+VH2)(3-11)人们发现一些半导体的霍尔效应很明显。伴随着半导体的发展,霍尔效应在磁场测量中的应用也随之迅速发展。
巨磁阻(GMR)效应在微小磁场测量领域实现了创新性的改变,尤其在利用涡流传感器进行无损检测方面取得了很大的进展。巨磁阻传感器具有低功耗、尺寸小、高灵敏度以及频率与灵敏度的不相关性等特点;同霍尔传感器相同,巨磁阻芯片是传感器的主要组成部分,一般也容易受到环境中磁场的干扰,不适用于电磁环境复杂的环境,对复杂波形电流也不能做出准确的检测。磁通门传感器(Fluxgatecurrentsensor),一开始主要用于弱磁场的检测,比如地磁场检测、铁矿石检测、位移检测和管道泄漏检测等方面。随着这种技术的发展,磁通-2-门传感器广泛应用于太空探测和地质勘探中。磁通门电流传感器的结构类似霍尔电流传感器,是基于检测磁路的饱和特性而设计的。磁通门电流传感器采用高磁导率的磁芯,通过磁芯的交替饱和,产生的感应电压和被测电流之间存在着一定的数量关系,从而可以得到被测电流。它实际上检测磁场的变化,通过磁与电的联系来得到被测电流。近几年,随着软磁材料的发展和电子元器件的革新,磁通门电流传感器的性能不断提高,其应用范围不断扩大,受到越来越多的关注。磁通门电流传感器还可以用于测量其他复杂的电流信号,例如在电子电路中,进行故障诊断和电路优化。芜湖储能电池测试电流传感器厂家现货
激励磁场振荡产生一个交变的磁场,这个交变的磁场会在被测导体中感应出电流。宁波分流器电流传感器案例
可以观察到基于铁芯C1磁化曲线的对称性及激磁方波电压的对称性,激磁电流波形正向峰值与反向峰值电流满足I+m=-I-m=Im=ρVOH/RS,且铁芯C1工作点在线性区与饱和区之间周期性变化,因此当自激振荡磁通门传感器一次测量电流为0时,激磁电流iex在单个周期内正负半波波形中心对称,即在单个周期内激磁电流iex平均值为0,对于信号采样而言,即在RS上的采样电压信号满足采样电压VRS平均值为0。接下来对一次电流为正向及反向直流时的自激振荡磁通门传感器振荡过程进行分析。当IP>0时,激磁电压波形Vex及激磁电流iex波形如图2-4中蓝色曲线所示,图中红色曲线为IP=0时激磁电流波形。宁波分流器电流传感器案例