传统磁通门电流传感器常用偶次谐波检测法来检测被测电流值。具体的数学模型以及测量均通过在环形磁芯上环绕激磁绕组和感应绕组来实现。根据法拉第电磁感应定律可知,感应绕组产生的感应电动势。激励磁场的瞬时值方向呈周期性变化,磁芯的磁导率随激励磁场的改变而变化,但是没有正负之分。偶次谐波检测法是磁通门传感器检测方法中比较直白,比较简单也是比较原始的测量方法,这一方法原理简单,易于理解。但是由于在提取偶次谐波过程中需要进行选频放大、相敏整流以及积分环节,检测电路复杂,精度较低,温漂较大。对于工业应用来说,偶次谐波解调电路具有复杂性,同时受到磁材料的工业性能限制,使用这种传感器费用较高。再生利用占比和市场规模将反超梯次利用场景,成为未来中国动力电池回收的主流方式。苏州分流器电流传感器案例
磁通门探头的磁通变化由激励电流以及初级被测电流的共同变化得出,引入了闭环结构,由于被测初级电流上的存在引起电感值变化,应用闭环原理进行检测以及补偿,补偿电流Zs输入到传感器的次级线圈中,使得开口处场强为0,电感返回至一个参考值。初级电流和次级电流的关系就会由匝数比很明确的给出来。无锡纳吉伏提出了一种紧凑式结构的磁通门传感器,该结构减少了一个磁芯, 应用套环式双磁芯,内部环形磁芯及缠绕在其上的反馈以及激励线圈与初级线圈应用积分反馈式磁通门电流传感器测量方式。外部环绕着反馈线圈的环形磁芯与初级线圈构成电流互感器用以测量高频交流电。这一结构的提出进一步减小了测量探头的体积及功耗。但是却是以付出精确度为代价的,因为套环式结构外部磁芯通过的磁场要远远小于通过内部磁环的,这样会影响电流互感器的测量精度;另外,单磁环无法解决磁通门原理中的变压器效应带来的影响。九江芯片式电流传感器单价磁通门信号淹没在强大的变压器效应感应电势之中。
偶次谐波法进行了分析,该方法简单、有效,但是检测电路复杂,精度较低,温漂较大。因此为改善磁通门技术的现状,吉林大学程福德团队提出了时间差型磁通门,该方法有可能解决现有磁通门分辨力、测量精度难以继续提高的问题,是磁通门研究中一个值得重视的方向; g Velasco-Quesada等提出了零磁通反馈式磁通门,使磁芯工作在零磁通状态下,有效减小磁滞对测量的影响; Takahiro Kudo等给出了一种通过测量输出信号峰值位置变化的方法得到被测电流的
导致正半周波自激振荡过程将不会在原时刻进入饱和区, 而是略有延后,即铁芯 C1 工作点将滞后进入正向饱和区 B;而在正向饱和区 B 及负向 饱和区 C 中,激磁电流峰值仍然满足 I+m=-I-m=Im=ρVOH/RS,且非线性电感时间常数未发 生变化, 因此铁芯 C1 饱和区自激振荡阶段, 激磁电流由 I+th1 正向增大至 I+m 的时间间隔 减小, 而激磁电流由 I-th1 负向增大至 I-m 的时间间隔增大。 由上述分析可知, 测量负向直 流时铁芯工作点的特征为:铁芯 C1 工作在正向饱和区 B 的时间小于于铁芯 C1 工作在负 向饱和区 C 的时间,使激磁电流 iex 波形上出现了正负半周波波形上的不对称性,即由 图 2-5 可知, 在一次电流 IP 为负时, 激磁电流 iex 在一个周波内, 正半周波电流平均值 大于负半周波电流平均值,采样电阻 RS 上采样电压 VRs 一个周波内平均值为正。只要磁芯磁导率随激励磁场强度变化,感应电势中就会出现随环境磁场强度变化的偶次谐波增量。
激磁电压信号Vex在一个周波内表达式为:(|Vout,0<t<TpVex=〈|l-Vout,Tp<t<Tp+TN其中TP=t3,在正向周波内,根据在线性区及各饱和区的时间间隔表达式(2-8)、(2-12)、(2-16)可以求得,正半波时间TP满足下式:TP=t1+(t2-t1)+(t3-t2)=τ1ln(1+2Im)+(τ2-τ1)ln(1+2Ith)(2-25)IC-ImIC-Ith-βIp1其中TN=t6-t3,在负向周波内,根据在线性区及各饱和区的时间间隔表达式(2-18)、(2-20)、(2-22)可以求得,负向周波时间TN满足下式:TN=t4-t3+(t5-t4)+(t6-t5)=τ1ln(1+2Im)+(τ2-τ1)ln(1+2Ith)(2-26)IC-ImIC-Ith+βIp1激磁电压信号Vex在一个周波内平均电压Vav表达式为:Vav=Vout=Vout磁通门电流传感器利用磁通门原理来测量电流,具有精度高、稳定性好、线性度好等优点。温州新能源汽车电流传感器哪家便宜
在电机控制领域,磁通门电流传感器可以用于测量电机的电流,以实现电机的精确控制和优化运行。苏州分流器电流传感器案例
新型能源、新型能源产品、先进设备的制造等新一代技术产业的发展都离不开电力电子技术的支持。电力电子技术是智能电网的助推器,以灵活交流输电(FACTS)技术、高压直流(HVDC) 输电技术、轻型高压直流输电技术、定制电力(custom power)技术和能量转换技术为特点的先进电力电子技术越来越多地应用于国家电网中。为了监测开关电源系统的运行情况,系统中往往需要电流传感器,根据具体检测线路的电流情况,设计选取适当的电流传感器是十分必要的。苏州分流器电流传感器案例