双电源转换开关是一种能够在两个电源之间进行切换的电气设备,分为二段式、三段式两种触头工作位。其中二段式开关具有两个工作位置:常用电源位置和备用电源位置。当主电源正常供电时,负载由主电源供电;一旦主电源出现故障或断电,控制逻辑会自动将负载切换到备用电源,以保证关键负载的连续运行。 二段式双电源转换开关的切换时间通常较快,因为它没有中间位置,这有助于在电源故障时迅速恢复供电。二段式双电源转换开关广泛应用于不允许断电的重要用电场合,如发电厂、银行证券业、电子及半导体制造厂、电信及网络数据中心、医院、机场、交通、消防设备等。在这些场合,选择二段式双电源转换开关通常能满足快速切换的需求,确保负载的稳定供电。《GB/T31142-2014转换开关选择与使用导则》第8.3.3处于负载位置时TSE的选择:PC级、二段式的ATSE转换动作时间快,负载断电时间短。它适用于对断电时间敏感的负载及应急负载。电子式转换开关采用电子式开关实现两路电源之间的转换。旁路转换开关
双电源自动转换开关的驱动机构分为励磁驱动和电机驱动,区别在于转换时间、寿命和可靠性。励磁驱动在转换瞬间带电,瞬间力矩大,转换小于100ms;机械寿命可达到2万次以上。电机驱动是由电机转动带动减速齿轮,进而驱动转换元件(断路器或隔离开关),实现两路电源的转换;电机力矩较小,且长时间不转换,易造成齿轮润滑不足,转换阻力变大,从而造成电机损坏,寿命一般在1000~3000次,故障率较高。即:励磁驱动免维护、寿命长、速度快;电机驱动速度慢、寿命短、故障率高。上海自动转换开关CB级ATSE:由两个断路器作为执行单元,搭配双电源转换开关控制器,具备双电源转换及短路保护功能。
双电源自动转换开关专yongPC级与派生PC级两种类别产品的灭弧系统不同: 由于ATSE是在两路电源中带负荷转换,开关的触头系统会出现二次电弧,因此一体化PC级ATSE要求开关在接通备用电源(或常用电源)前,前一个电弧必须熄灭,且游离气体迅速排放,否则开关内部易出现短路,造成转换失败。 派生PC级ATSE主电路是由符合GB14048.3《开关、隔离器、隔离开关以及熔断器组合电器》标准的两个负荷开关组合而成,只具有简单的灭弧装置,效果一般;(以隔离开关为主体组合而成的CB级ATSE没有灭弧装置)。
双电源自动转换开关的切换时间对设备的影响主要体现在以下几个方面: 设备的稳定运行:如果切换时间过长,那么在电源切换期间,设备可能会经历一段时间的停电或电压不稳定状态。对于一些对电源稳定性要求较高的设备,如医疗设备、通信设备等,这种停电或电压波动可能导致设备运行异常,甚至损坏。 设备寿命:频繁的电源切换或切换过程中的电压、电流冲击都可能对设备的内部元件造成磨损,从而缩短设备的使用寿命。特别是对于需要长时间运行的设备,如服务器、数据中心等,这种影响更为明显。 生产效率:对于生产线等需要连续运行的工作环境,电源切换可能导致生产中断,从而影响生产效率。长时间的停电或电压不稳定还可能导致产品质量下降或生产损失。 因此,在选择双电源自动转换开关时,需要根据设备的具体需求和运行环境来确定合适的切换时间。对于关键设备和环境,应选择切换时间短、稳定性好的双电源自动转换开关,以保证设备的正常运行和生产效率。同时,也应注意定期维护和检查双电源自动转换开关,确保其正常工作,避免因切换时间过长或不稳定而对设备造成损害。ATSE由一个(或几个)转换开关电器和其它必需的电器组成。
双电源自动转换开关电器级别分PC级、CB级、CC级三大类: PC级:能够接通、承载、但不用于分断短路电流的ATSE; CB级:配备过电流脱扣器的ATSE,它的主触头能够接通并用于分断短路电流,执行主开关为断路器; CC级:能够接通和承载,但不用于分断短路电流的TSE。该TSE主要由满足GB14048.4要求的电器组成(不在本文讨论范围)。 性能对比: 1、驱动方式不同 PC级ATSE采用励磁线圈驱动,转换速度快,可达50ms,在转换过程中线圈瞬间通电,转换结束后线圈不通电,延长了使用寿命和节省了电能; 而CB级ATSE是减速电机驱动,转换速度慢,一般在1.5S以上,且存在电机堵转开关转换失败的危险; 2、保护功能起作用时ATSE转换功能失效 按照标准,CB级ATSE只能够在短路条件下切断电源,但是如果CB级ATSE采用具有“过载保护”功能的断路器,就会因为过载保护而导致负载强行断电,需要人工现场手动恢复才能够供电,这是ATSE不允许的;特别对于消防设备的电源,不允许过载切断电源,所以,用于消防设备的ATSE,不能够采用具有过载保护功能的CB级ATSE。电子式双电源转换开关是实现两路电源之间高速切换的无触点电子式开关。安徽转换开关使用类别
NSD3ATS-HV系列高速双电源转换开关,触头切换时间5ms,实现两路电源的高速切换。旁路转换开关
自动转换开关的原理主要基于电源状态监测和自动切换机制。它通常由开关主体、控制器以及操作机构三个结构部分组成。在工作过程中,控制器实时监测两路电源的状态。一旦主电源出现故障、电压不稳、异常或断相等情况,控制器会迅速作出判断,并发出相应的动作指令。这个指令随后通过操作机构传递给开关本体的操作手柄,使其实现向备用电源的自动投切。通过这种方式,自动转换开关能够确保负荷端得到正常供电支持,进而保证整个电力系统的稳定工作和正常运行。此外,自动转换开关的设计也考虑到了一些特殊情况。例如,当主电源恢复正常时,备用电源会自动断开,避免同时供电可能导致的问题。这种切换过程通常是快速且平稳的,以确保对设备或电器的供电不会受到明显影响。总的来说,自动转换开关通过实时监测电源状态,并在必要时自动切换到备用电源,从而实现对电力供应的连续性和可靠性的保障。这一机制在需要高可靠性的电力供应场合中,如数据中心、医疗设备、重要工业设备等,具有广泛的应用价值。旁路转换开关