编码器的种类有很多:增量式编码器、绝对值编码器,有轴或者无轴编码器,电压输出、推拉输出、集电极开路输出等等。但不管什么类型的编码器,其目的都类似,得到转动的角度,角速度、位移等。常见的增量式编码器,增量式编码器也可以叫正交编码器,也就是说可以通过其A、B的相位知道编码器是正转,还是反转,还可以根据编码器参数得出旋转了多少角度等。A、B两线提供相位相差90度的脉冲信号,用其来计算旋转的角度;Z线为过零点线,也就是说每转一转,经过某一点都会输出一个脉冲信号,主要用于“过零校正”。 在传动输出轴上加装工业以太网绝对值多圈编码器,同步问题、高效与可靠性问题可以简单化。马鞍山CC158T-HS-10-CR-G编码器

光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用**多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号。根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝DUi式以及混合式三种。AC150S-HP-21G-S005编码器技术支持光电编码器是一种角度(角速度)检测装置,具有体积小,精度高,工作可靠,接口数字化等优点。

在光栅板上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间**一个增量周期;检测光栅上刻有A、B两组与光栅板相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。它们的节距和码盘上的节距相等。并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差90度电角度。当码盘随着被测轴转动时,检测光栅不动,光线透过码盘和检测光栅上透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差90度电角度的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。
编码器是一种旋转传感器,可将旋转零件的位置和位移转换为一系列数字脉冲信号。这些脉冲信号由控制系统收集和处理,并发出一系列指令以调整和更改设备的运行状态。如果将编码器与变速杆或螺旋螺钉结合使用,则也可以用于测量线性运动部件的位置和位移。编码器用于电机输出信号反馈系统,测量和控制设备。编码器的内部部分由一个光学代码盘和一个***组成。由光代码盘的旋转产生的光可变参数被转换为相应的电参数,并且通过变频器中的预放大和信号处理系统输出用于驱动功率器件的信号。 。通常,旋转编码器只能反馈速度信号,将其与设定值进行比较并反馈给变频器执行单元以调节电动机速度。一个编码器的性能一般由分辨率来描述,而非测量精度。

在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝DUI型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是好的;因此,当电源断开时,绝DUI型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。现在编码器的厂家生产的系列都很全,一般都是较少的,如电梯较少型编码器、机床较少编码器、伺服电机较少型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 根据脉冲的变化,可以精确测量和控制设备位移量。AC150S-HP-21G-S005编码器技术支持
TTL接口适用于更长的距离和更高的频率。马鞍山CC158T-HS-10-CR-G编码器
编码器的脉冲信号,在长距离的传输中,由于电压的升降,会产生锯齿效应。HTL接口的信号电平较高,电压上升高,锯齿效应明显,所以不太适合长距离传输。开路集电极由于输出只能主动朝一个方向切换,锯齿效应比HTL还要严重,在长距离有更多的问题,因此也不适合于长距离传输。而TTL接口信号电平较低,电压不上升像HTL那么高,锯齿效应没有HTL那么明显。并且,TTL还可以使用差分信号进行测量。因此TTL接口适用于更长的距离和更高的频率。 马鞍山CC158T-HS-10-CR-G编码器