在数字经济与人工智能深度融合的2025年,服务器已成为支撑千行百业数字化转型的重心基础设施。作为国家高新企业,深圳市倍联德实业有限公司(以下简称“倍联德”)凭借其在AI服务器、边缘计算、液冷技术及全闪存存储等领域的全栈创新能力,正为金融、医疗、科研、制造等领域提供高效、可靠、绿色的算力底座,成为推动中国智造迈向全球价值链变革的关键力量。倍联德成立于2015年,总部位于深圳龙岗,专注于服务器、边缘计算设备及液冷工作站的研发与生产,累计获得50余项技术与软著,市场占有率稳居行业前列。智慧医疗解决方案提高了医疗服务的效率和质量。广东高性能液冷工作站解决方案公司

针对高密度计算场景的散热难题,倍联德将冷板式液冷技术应用于存储服务器,通过单相冷却液循环将PUE值压低至1.08,较风冷方案节能35%。例如,其R500Q-S3液冷存储集群在搭载48块16TB HDD时,单柜功率密度达25kW,但噪音控制在55分贝以下,同时支持热插拔维护,确保数据中心全年运行稳定性。在材料科学领域,倍联德与中科院合作开发了浸没式液冷超算存储集群,通过NVLink互联技术实现16张GPU显卡的显存共享,使分子动力学模拟的原子数量从100万级提升至10亿级。在锂离子电池电解液研发项目中,该方案将模拟周期从3个月压缩至7天,助力团队快速筛选出性能提升40%的新型配方。深圳数据中心解决方案服务机构联邦学习在云边端协同中实现跨域数据隐私保护,使医院、银行等机构可联合建模而不泄露原始数据。

在材料科学领域,倍联德与中科院合作开发了浸没式液冷超算集群,使分子动力学模拟的原子数量从100万级提升至10亿级。在锂离子电池电解液研发项目中,该方案将模拟周期从3个月压缩至7天,助力团队快速筛选出性能提升40%的新型配方。倍联德通过“硬件+软件+服务”的一体化模式,构建起覆盖芯片厂商、ISV及终端用户的开放生态:公司与英特尔、英伟达、华为等企业建立联合实验室,共同优化存储协议与加速库。例如,其存储系统深度适配NVIDIA Magnum IO框架,使AI训练任务的数据加载速度提升3倍;与华为合作开发的NoF+存储网络解决方案,已应用于30余家金融机构。
在2025年的智慧城市浪潮中,数据已成为驱动城市治理、公共服务与产业升级的重心引擎。作为国家高新企业,深圳市倍联德实业有限公司(以下简称“倍联德”)凭借其在边缘计算、AI服务器、液冷技术及全闪存存储领域的全栈创新能力,为智慧交通、智慧安防、智慧医疗等场景提供高性能、低延迟、绿色节能的算力支撑,成为推动中国智慧城市建设的企业。倍联德智慧城市解决方案已渗透至交通、安防、医疗等关键领域,形成从硬件到算法的完整能力:倍联德与华为、英特尔合作开发的“交通信号灯智能控制平台”,集成边缘计算节点与全闪存存储系统,支持实时分析交通流量、天气、事件等多维度数据。在重庆轨道交通COCC(控制中心)项目中,该平台通过运能运量匹配分析,将列车准点率提升至99.5%,乘客平均等待时间从15分钟降至3分钟。智慧能源解决方案在节能减排方面取得了明显成效。

倍联德G800P系列AI服务器搭载8张NVIDIA RTX 6000 Ada显卡,支持多卡并行计算,单柜算力密度达500PFlops,可满足城市大脑、公共安全预警等大规模AI训练需求。在深圳某区“城市运行管理服务平台”中,该服务器通过分析海量视频数据,实现占道经营、违规停车等事件的自动识别与处置,事件响应时间从15分钟压缩至90秒,人工巡查成本降低60%。针对数据中心能耗高、散热难的痛点,倍联德冷板式液冷技术将服务器PUE值压低至1.05,较传统风冷方案节能40%。其R500Q系列2U液冷服务器在搭载8张RTX 5880显卡时,单柜功率密度达50kW,但噪音控制在55分贝以下,同时支持热插拔维护,确保99.99%的可用性。在东莞智慧城管项目中,该方案使产线能耗降低22%,单次模型训练碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。云边端协同解决方案在智慧城市和智能交通中实现了数据的无缝传输与智能处理。广东高性能服务器解决方案应用场景
多屏显示工作站通过GPU多流输出功能,支持金融交易员同时监控数百个实时数据图表。广东高性能液冷工作站解决方案公司
针对高密度计算场景的散热难题,倍联德推出R300Q/R500Q系列2U液冷服务器,采用冷板式液冷设计,PUE值低至1.05,较传统风冷方案节能40%。以某三甲医院为例,其部署的R500Q液冷工作站搭载8张NVIDIA RTX 5880 Ada显卡,在运行6710亿参数的DeepSeek医学大模型时,单柜功率密度达50kW,但通过液冷技术将噪音控制在55分贝以下,同时使单次模型训练的碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。倍联德自主研发的异构计算平台支持CPU+GPU+DPU协同工作,通过动态资源调度优化计算-通信重叠率。在香港科技大学的深度学习平台升级项目中,其定制化工作站采用4张NVIDIA RTX 4090显卡与至强四代处理器组合,配合TensorFlow框架实现98%的硬件利用率,使ResNet-152模型的训练时间从72小时压缩至8小时,而部署成本只为传统方案的1/3。广东高性能液冷工作站解决方案公司