NTP Set Solution(脱氧核糖核苷三磷酸溶液套装)是分子生物学实验中不可或缺的基础试剂,包含四种高纯度的dNTP(dATP、dCTP、dTTP和dGTP),每种浓度均为100 mM。这种高浓度的溶液套装为DNA合成提供了高质量的原料,广泛应用于PCR、DNA测序、克隆以及体外DNA合成等领域。产品特点dNTP Set Solution (100 mM each) 提供了四种脱氧核苷三磷酸,每种浓度均为100 mM,能够满足多种实验需求。这种高浓度设计不仅减少了实验中试剂的添加量,还降低了污染风险,同时便于实验人员根据具体需求进行稀释和使用。此外,该套装经过严格的质量控制,确保纯度和稳定性,能够为DNA合成提供可靠的保障。dNTP Set Solution中的四种核苷酸是DNA聚合酶合成DNA链时的关键底物,其纯度和浓度直接影响DNA合成的效率和准确性。高纯度的dNTP能够减少杂质干扰,降低错误掺入率,从而提高实验的成功率和重复性。应用场景dNTP Set Solution是分子生物学实验的重要试剂,广泛应用于以下领域:PCR反应:dNTP是PCR反应的关键组分之一,为DNA链的延伸提供了必要的核苷酸。在常规PCR、多重PCR和实时定量PCR中,dNTP的纯度和浓度直接影响扩增效率和特异性。Cas9 NLS与CRISPR/Cas9系统中的gRNA兼容,可以进行位点特异性的DNA切割 。EcoRI内切酶

在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 DraI 便是其中一位“稀有切割手”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。DraI 的识别序列是“TTT^AAA”,这一序列在基因组中相对罕见,使得 DraI 的切割位点相对稀少。这种稀有性使得 DraI 在处理大型基因组或复杂基因片段时具有独特的优势,能够避免过度切割导致的片段过小或信息丢失。DraI 会在识别序列的第 4 位和第 5 位之间切断 DNA 链,产生黏性末端。这种黏性末端的特性使得 DraI 在基因克隆和重组 DNA 构建中具有独特的优势。在基因工程中,DraI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割能力使得 DraI 成为处理大型基因组时的理想选择。DraI 的另一个重要应用是基因分析。通过观察 DraI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。EGFRvIII peptide (PEPvIII)Ultra-Long DNA Polymerase能够扩增包含多个外显子的长基因片段,有助于揭示疾病的分子机制。

Pfu DNA聚合酶是一种从嗜热古细菌 Pyrococcus furiosus 中提取的高保真DNA聚合酶,因其准确性和热稳定性而被广应用于分子生物学研究。Pfu DNA聚合酶具有5'-3' DNA聚合酶活性和3'-5'外切酶活性,这种独特的校正功能使其能够在DNA合成过程中纠正错误掺入的碱基,从而提高扩增的保真性。与Taq DNA聚合酶相比,Pfu酶的错误率更低,其保真性是Taq酶的10倍以上。这种高保真性使其成为需要准确扩增的实验(如基因克隆、突变研究和测序准备)的理想选择。此外,Pfu DNA聚合酶具有出色的热稳定性,能够在95°C的高温下保持活性,适合PCR反应的高温变性步骤。其扩增产物为平末端,适用于平末端克隆,但需注意,Pfu酶扩增的DNA片段不适合常规的T载体克隆。Pfu DNA聚合酶的应用领域广,包括高保真PCR、基因克隆、点突变、全基因合成以及高质量测序样本的准备。它还常与其他酶(如Taq酶)联合使用,以结合高保真性和快速扩增的优点。总之,Pfu DNA聚合酶凭借其高保真性、热稳定性和广的应用场景,已成为分子生物学实验中不可或缺的工具,为科学研究提供了强有力的支持。
在现代替物技术的微观世界中,限制性核酸内切酶是基因工程的关键工具之一,而 ApaI 便是其中一位“精细切割手”。它以其高度的特异性和精细的切割能力,在基因工程、分子生物学研究以及遗传学等领域发挥着重要作用。ApaI 的识别序列是“GGG^CCC”,这一序列在基因组中相对罕见,使得 ApaI 能够在特定位置进行切割。它会在识别到该序列后,在“^”标记的位置将 DNA 链切断,产生黏性末端。这种切割方式使得 ApaI 在基因克隆和重组 DNA 构建中具有独特的优势。在基因工程中,ApaI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这一过程不仅需要精细的切割,还需要切割后的片段能够完美匹配,而 ApaI 的黏性末端特性正好满足了这一需求。ApaI 的另一个重要应用是基因分析。通过观察 ApaI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。例如,在某些遗传病的研究中,ApaI 可以用来检测基因突变,帮助科学家更好地理解疾病的遗传机制。这种精细的切割能力,让它在基因工程领域大放异彩。

在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 BspHI 便是其中一位“精细刻刀”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。BspHI 的识别序列是“T^CGA”,这一序列在基因组中相对常见,使得 BspHI 能够在多个位点进行切割。它会在“^”标记的位置将 DNA 链切断,产生黏性末端。这种黏性末端的特性使得 BspHI 在基因克隆和重组 DNA 构建中具有独特的优势。黏性末端可以与其他具有互补序列的 DN片段通过碱基配对结合,再利用 DNA 连接酶进行连接,从而构建出新的重组 DNA 分子。在基因工程中,BspHI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 BspHI 成为基因工程中比较常用的工具酶之一。BspHI 的另一个重要应用是基因分析。通过观察 BspHI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。Phusion Master Mix (2×) 是一种即用型预混液包含dNTPs、Mg²⁺和优化的反应缓冲液加入模板和引物可进行反应。SdaI (SbfI)限制性内切酶
AflII的发现和应用是分子生物学领域的一大进步。EcoRI内切酶
在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 FokI 无疑是其中一位“创新先锋”。它不仅具有独特的识别序列和精细的切割能力,还在基因编辑技术中发挥着重要作用。FokI 的识别序列是“GGATG”,这一序列在基因组中相对常见,使得 FokI 能够在多个位点进行切割。然而,FokI 比较独特之处在于它的切割机制。与大多数限制性酶直接在识别位点附近切割 DNA 不同,FokI 的切割位点位于识别序列之外。这种特性使得 FokI 在基因编辑中具有独特的优势,能够实现更灵活的切割和插入操作。在基因工程中,FokI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。此外,FokI 还被用于开发新型基因编辑工具,如锌指核酸酶(ZFN)和转录启动因子样效应物核酸酶(TALEN)。这些工具利用 FokI 的切割活性,结合特异性 DNA 结合域,能够在基因组的任何位置实现精细切割和编辑。FokI 的另一个重要应用是基因分析。通过观察 FokI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。EcoRI内切酶
重组人整合素αVβ5(ITGAV&ITGB5)异源二聚体蛋白(His-Avi标签)是一种重要的细胞粘附分子,广泛应用于细胞生物学、药物筛选和疾病机制研究。整合素αVβ5由αV(ITGAV)和β5(ITGB5)两个亚基组成,是细胞外基质(ECM)与细胞之间信号传递的关键介质,尤其在转移、血管生成和病毒沾染等过程中发挥重要作用。该重组蛋白通过基因工程技术在哺乳动物细胞中表达,确保了其天然的构象和生物活性。His标签便于通过金属螯合亲和层析进行纯化,而Avi标签则允许通过生物素连接酶进行特异性生物素化,便于后续的检测、固定或与其他分子的偶联。这种双重标签设计更大提高了蛋白在实验中的可操作性和应用灵活...