单纯的导电聚合物在充放电循环的过程中通常稳定性较差,使得其在电容器电极等方面的应用受到了限制,开发具有优异导电性能的复合材料势在必行。石墨烯和导电聚合物共轭结构的相互作用可以增强基体导电性,同时又可以实现结构的增强。因此,导电聚合物与氧化石墨烯的复合成为一个研究热点49。虽然GO本身并不导电,但是在高分子加工过程中GO可以部分还原,而导电填料与基体间的强界面作用以及导电填料在基体中良好的分散性能更有利于聚合物基体导电性能的提高53。表2列出了一些GO在一些类型的高分子基体中电学性能提升效果。高导电石墨烯铜复合材料又称为超级铜。应该怎么做石墨烯复合材料粉体

随着我国经济的发展以及对于基础建设的大力推进,**、易施工、价廉的混凝土的用量日益增加,然而由于混凝土基体内部存在微裂缝和孔隙的缺陷,导致混凝土容易遭受一些腐蚀介质如氯盐、硫酸盐等的侵蚀,从而使混凝土构件的服役寿命缩短。利用纳米材料来提高混凝土结构的耐久性能已成为目前研究的重要内容。Wang95等研究发现当GO的添加量为0.02wt.%时,可使水泥基复合材料的28天抗压和抗折强度分别提高40.4%和90.5%,水泥基材料在3d龄期的放热量及放热速率下降50%,这在很大程度上减少了由于水泥水化热的作用导致温度应力而出现裂缝。可见GO的添加既能够增强水泥基的力学强度,又能够减小外界腐蚀因子对水泥的侵蚀,从而提高了水泥的耐久性能。福建导热石墨烯复合材料图片石墨烯的导热性能优异,易分散,易加工。

利用原位聚合法制备了氧化石墨烯/聚乙烯导电复合材料,结果发现当石墨烯含量为2wt.%时,复合材料的导电率达到比较高2.9x10-2s/cm,作者认为氧化石墨烯在基体中分散性较好且形成了有效的导电网络。用格氏试剂将GO表面的羟基、环氧基和羧基格氏化,然后与TiCl4反应可制备Ziegler-Natta催化剂。利用改性过的催化剂,原位催化丙烯在GO表面聚合可生成聚丙烯-g-GO(PP-g-GO)复合材料11。该复合材料在PP树脂中可均匀分散,减少了GO在PP中的团聚。PP-g-GO在高温(190°C)加工过程中,GO被初步还原,从而提高了复合材料的导电性。通过这种原位聚合的方式,1.52wt.%的GO添加量即可使复合材料达到导静电的水平(10-6S/m)。
许多对聚合物/碳纳米管纳米复合材料的研究目的在于开发和利用碳纳米管出色的力学性能,同时对聚合物基体引入一些新的性能,比如导电性、导热性等。但是,尽管许多工作集中在聚合物/碳纳米管纳米复合材料的研究上,许多问题仍然存在。相比于碳纳米管,制备基于石墨烯的结构和功能体系更加可行,这是因为石墨烯具有更大的比表面积,更强的界面结合力,以及同样出色的物理性能。完美石墨烯的杨氏模量和断裂强度高达1TPa和130GPa[41],而制备复合材料**常用的改性及还原石墨烯的杨氏模量也可达到250GPa[57,58],高出一般的聚合物2~3个数量级,因此,在聚合物中加入改性或还原石墨烯同样能有效地增强聚合物的力学性能。氧化石墨烯分散液可与复合材料进行原位复配,从而赋予复合材料导电、导热、增强、阻燃、抑菌等性能。

当前,石墨烯材料研究领域真正的挑战是如何低成本、大批量地生产高质量的石墨烯薄层,从而进行大规模应用.石墨烯材料的制备思路可分为自上而下从石墨或碳纳米管剥离得到石墨烯与自下而上地用分子合成石墨稀两种(图1)[23].前者以石墨稀和碳纳米管为原料通过机械剥离法、液相剥离法、氧化还原法等方法将石墨片层从石墨中剥离出来,后者通过含碳化合物以化学气相沉积和有机合成等途径来合成石墨烯。机械剥离法直接从石墨出发,通过一定的机械力将石墨片层剥离,可以制备得到缺陷较少的石墨烯材料.Geim小组就是通过“撕胶带”的机械剥离法***制备出了单层石墨烯.可用于注射和挤出成型制件,尤其适用于煤炭、矿井以及石油天然气运输等领域的管材制件。福建合成石墨烯复合材料类型
应用于锂电正负极材料,还可以应用于橡胶、塑料、树脂、纤维等高分子复合材料领域。应该怎么做石墨烯复合材料粉体
目前的负极材料中,硅被认为是相当有有潜力的负极材料之一,因为它在自然界中含量多,还具有低的嵌锂电位和很高的理论比容量。存在的问题是在锂离子脱嵌过程中,硅的体积变化比较明显,使得材料与负极集流体之间粘结性变差,造成电池循环性能的大幅度下降。同时硅还会在电池循环过程中出现团聚现象,引起电池容量的迅速下降。将硅材料和石墨烯进行复合,石墨烯可以抑制硅材料在充放电过程中的团聚,减缓硅材料的体积变化,从而提高电池的容量和循环性能。此外,石墨烯有助于电解液的浸润,从而提高电池的性能。He等通过喷雾干燥法制备了一种高性能的石墨烯/硅复合材料(图6.1),将氧化石墨烯与纳米硅超声混合,通过喷雾干燥后在700℃下进行煅烧得到复合材料,在200 mA g-1 的电流密度下充放电30次后,容量仍可达到1502 mAh g-1,其容量保持率为98%,说明该石墨烯/硅复合材料具有良好的循环性能应该怎么做石墨烯复合材料粉体