一些学者则利用 PV 模块与环境之间的温差进行发电,形成光伏/热电(PV-TEG)混合发电装置以提升系统综合效率。VAN对该技术的可行性进行了评估,热电模块通过冷端热沉与环境对流传热维持 50~60℃温差,电效率提升 8%~23%。在此基础上,DENG 等对集热器进行了优化以获取更大温差,冷端热沉通过与水对流传热维持温度,输出功率提升 107.9%。GUO 等将染料敏化电池与热电模块连接形成“串联混合电池”,与单一染敏电池相比,串联混合电池效率提升了10%。正和铝业为您提供光伏液冷,有需求可以来电咨询!北京防水光伏液冷加工
同时,光电池材料本身以及与金属板之间存在很大的温度梯度,而且光电池材料和与之相焊接的金属材料之间也存在着热胀冷缩的差异,这些都容易导致光电池材料的热损伤、断裂和与金属板之间焊接的脱落。由于以上缺陷,这一技术未能大量被采用。本发明的目的是克服上述现有技术的不足,提供一种太阳能光伏转换方法和使用该方法的发电装置,降低成本,简化结构,提高散热效率,延长光电池的寿命。本发明的太阳能光伏转换方法使用光电池作为基本部件,光电池至少在光电转换工作期间由冷却液进行冷却,太阳光穿过透明的冷却液而到达光电池上。浙江电池光伏液冷加工正和铝业光伏液冷获得众多用户的认可。
本发明用于500kW大功率光伏逆变器的水冷散热系统,散热系统分两部分,逆变器内部散热片和室外散热装置,水泵带动冷却介质在系统内循环,带走散热片的热量,起到对逆变器发热元件散热的作用。本发明的散热片放在逆变器内部,电力电子器件贴在散热片表面,散热片上有进水口和出水口。本发明的室外散热装置是通过冷却介质在系统内循环,把热量通过散热器散掉,冷却介质为50%纯水和50%乙二醇混合物,加入乙二醇用于防冻。本发明包括水冷板13、外部管道14和室外散热装置15;水冷板13放于逆变器内部,电力电子器件贴在水冷板表面,通过液体在水冷板内循环带走电力电子器件散发的热量;
图5、图6示出了使用本发明原理的一种多元组合式太阳能光伏发电装置,该装置的特点是反射式聚光器2、散热器(或箱体)6和光电转换器合为一体,将多个单元排列在一起,聚光器2同时起散热器的作用,以降低装置的成本。在该结构中接收器装在反射式聚光器2的背面,利用反射式聚光器2散热。反射式聚光器2的材料可以是各种导热材料,其大小、厚度和形状可以根据需要而变化。本发明着重解决由于太阳光照射特别是聚光而使光电池产生高温所带来的问题,主要办法是将光电池材料浸泡在透明的冷却液中,以实现速散热,保持低温的效果。实验证明,如将太阳光聚焦50倍,照到光电池上,在把光电池置于常温下纯净的水中时的发电功率是把光电池放在空气中时的2倍多。如果把光电池放在空气中而不是放在水中,由于光电池变的很烫,一分钟内,焊在光电池上的电极就会脱落。正和铝业是一家专业提供光伏液冷的公司,有想法的不要错过哦!
风冷 风冷是利用空气自然或强制对流对设备进行冷却的方法,具有结构简单、技术成熟等优点。目前,自然对流冷却的研究主要是从提升表面对流传热系数和增大换热面积两方面入手,但该冷却方式具有一定的散热极限。为提升表面对流传热系数,强制空冷中需要接入风机,但此时需要综合考虑电池效率提升与风机功耗增加之间的平衡问题。1.1.1 自然对流冷却 TANAGNOSTOPOULOS 等对光伏板背面的两种低成本空气流道改进方案进行了实验研究,两种改进方案分别为:通过在光伏板背面的空气流道中间增加金属薄板(TMS)以及空气流道壁面设置涂黑翅片(FIN)来提高空气与光伏板背面的对流传热,实验中两种改进方案与普通的光伏板空气流道自然冷却相比较,如图1(a)所示。结果表明:TMS方案下的电池温度要高于 FIN 方案,但均低于对比装置,PV 模块温度平均下降 3~10℃。光伏液冷,就选正和铝业,有想法的可以来电咨询!江苏光伏液冷研发
正和铝业是一家专业提供光伏液冷的公司,有想法的可以来电咨询!北京防水光伏液冷加工
储能热管理因为电池热特性,热管理成为电化学储能产业链关键一环。从产业链价值量拆分来看,储能系统中电池成本占比约55%,PCS占比约20%,BMS和EMS合计占比约11%,热管理约占2%-4%。热管理价值量占比相对较低,但却起着至关重要的作用,是保证储能系统持续安全运行的关键。电站事故频发,锂电池热失控是引发储能系统安全事故的主要原因之一。储能系统产热大,散热空间有限,自然通风下难以实现温度控制,易损害电池的寿命和安全。与动力电池系统相比,储能系统电池的功率更大,数量更多,产热更强,而电池排列紧密又导致散热空间有限,热量难以快速、均匀地散发,易引起电池组之间的热量聚集、运行温差过大导致储能系统安全事故频发等现象,然后损害电池的寿命和安全。北京防水光伏液冷加工