直冲磁阻)、cmr(colossalmagnetoresistance,庞磁阻)等各种各样的mr元件。此外,作为磁传感器11、12,也可以使用具有霍尔元件的磁元件、具有利用磁阻抗效应的mi(magnetoimpedance,磁阻抗)元件的磁元件或磁通门型磁元件等。此外,作为磁传感器11、12的驱动方法,也可以采用恒流驱动、脉冲驱动等。2.动作以下关于如以上那样构成的电流传感器1的动作进行说明。2-1.动作的概要关于本实施方式涉及的电流传感器1的动作的概要,利用图4进行说明。图4是用于说明电流传感器1中的信号磁场b1、b2与磁传感器11、12的关系的图。图4示出了图1的a-a’剖面附近的各流路21、22以及各磁传感器11、12。在图4中,例示了在检测对象的电流在汇流条2中沿+y朝向流动时(参照图1)在第1流路21附近产生的信号磁场b1和在第2流路22附近产生的信号磁场b2。在汇流条2中,电流发生分流而流到第1流路21和第2流路22。由此,如图4所示,第1流路21附近的信号磁场b1环绕第1流路21的周围,第2流路22附近的信号磁场b2环绕第2流路22的周围。在本实施方式涉及的电流传感器1中,在第1流路21和第2流路22中电流沿相同朝向(例如+y朝向)流动,因此第1流路21附近的信号磁场b1和第2流路22附近的信号磁场b2具有相同的环绕方向。在霍尔元件平面的法线方向施加磁场(强度为B)。武汉霍尔电流传感器
δs1=δsg+δnz…(8)δs2=δsg-δnz…(9)根据上式(7a)、(8)、(9),在输出信号sout中,能够在两个磁传感器11、12的信号差δs1、δs2间消除外部磁场所引起的噪声分量δnz。2-2-1.关于外部磁场耐性在如以上那样的电流传感器1中,关于使输出信号sout不根据外部磁场而变动的外部磁场耐性,利用图6进行说明。图6是用于说明各种电流传感器中的外部磁场耐性的图。图6的(a)示出具备两个磁传感器11’、12’的典型的电流传感器1x的结构例。本例的电流传感器1x具备*与一个磁传感器11’连接的运算部31’、和*与另一个磁传感器12’连接的运算部32’。因此,各个运算部31’、32’*输入两个磁传感器11’、12’的一方的传感器信号并分别进行差动放大。在如上述那样的电流传感器1x中,对各磁传感器11’、12’的信号差δs1、δs2乘以不同的增益a1’、a2’来生成输出信号sout’。因此,在各个增益a1’、a2’产生偏差的情况下,各信号差δs1、δs2中包含的噪声分量δnz不被抵消,外部磁场耐性会下降。例如,可设想各个增益a1、a2根据各个运算部31’、32’间的温度偏差、制造偏差而产生偏差。相对于此,本实施方式涉及的电流传感器1通过将第1以及第2运算部31、32双方与各磁传感器11、12连接。兰州新能源汽车电流传感器定制霍尔传感器可以是恒定的磁场。
例如顺时针方向)。由此,如图4所示,在第1以及第2流路21、22间的第1流路21附近的区域r1和第2流路22附近的区域r2,通过各自的信号磁场b1、b2的x分量彼此成为相反朝向。因此,在本实施方式的电流传感器1中,在如上述那样的第1流路21附近的区域r1配置一个磁传感器11,在第2流路22附近的区域r2配置另一个磁传感器12。由此,在两个磁传感器11、12会输入彼此反相的信号磁场b1、b2。在此,可设想在输入到各磁传感器11、12的磁场中,不*包含信号磁场b1、b2,还包含如干扰磁场那样的噪声。可认为这样的噪声通过使两个磁传感器11、12的配置位置接近从而对各磁传感器11、12以同相(相同朝向并且同等程度的大小)被输入。因此,在本实施方式涉及的电流传感器1中,运算装置3对两个磁传感器11、12的感测结果的差动放大进行运算,算出表示电流的检测结果的输出信号sout。由此,能够将各个磁传感器11、12的感测结果中可能以同相包含的噪声抵消,使基于信号磁场b1、b2的电流的检测精度良好。以下,对电流传感器1的动作的详情进行说明。2-2.动作的详情关于本实施方式涉及的电流传感器1的动作的详情,利用图5进行说明。图5是用于说明电流传感器1的动作的图。
用于解决课题的手段本发明涉及的电流传感器基于由检测对象的电流产生的磁场对电流进行检测。电流传感器具备第1磁传感器、第2磁传感器、第1运算部、第2运算部和输出部。第1磁传感器对磁场进行感测,生成第1传感器信号以及第2传感器信号。第2磁传感器对与第1磁传感器根据电流而感测的磁场反相的磁场进行感测,生成第3传感器信号以及第4传感器信号。第1运算部输入第1传感器信号以及第3传感器信号,对所输入的各信号进行给定的运算来生成第1运算信号。第2运算部输入第2传感器信号以及第4传感器信号,对所输入的各信号进行给定的运算来生成第2运算信号。输出部输入第1运算信号以及第2运算信号,基于所输入的各信号来生成输出信号。发明效果根据本发明涉及的电流传感器,第1运算部以及第2运算部双方使用来自两个磁传感器的传感器信号。由此,在基于由电流产生的磁场来检测电流的电流传感器中,能够降低外部磁场的影响。附图说明图1是例示实施方式1涉及的电流传感器的外观的立体图。图2是表示实施方式1涉及的电流传感器的结构的框图。图3是例示电流传感器中的磁传感器的结构的电路图。图4是用于说明电流传感器中的信号磁场与磁传感器的关系的图。以确保传感器的安全运行。
图5是用于说明实施方式1涉及的电流传感器的动作的图。图6是用于说明电流传感器中的外部磁场耐性的图。图7是表示实施方式2涉及的电流传感器的结构的框图。图8是表示电流传感器的变形例1的结构的框图。图9是表示电流传感器的变形例2的结构的框图。图10是表示电流传感器的变形例3的结构的框图。图11是表示流过被电流传感器检测的电流的导体的变形例1的图。图12是表示流过被电流传感器检测的电流的导体的变形例2的图。具体实施方式以下,参照附图对本发明涉及的电流传感器的实施方式进行说明。各实施方式为例示,能够进行在不同的实施方式中示出的结构的部分置换或组合,这是不言而喻的。在实施方式2以后,省略关于与实施方式1共同的事项的记述,*针对不同点进行说明。特别是,关于同样的结构所产生的同样的作用效果,将不在每个实施方式中逐次提及。(实施方式1)在实施方式1中,提供一种在基于由检测对象的电流产生的磁场(以下称为“信号磁场”)来检测电流的电流传感器中能够确保外部磁场耐性的电流传感器。外部磁场耐性是使得电流的检测结果不会由于与信号磁场分开地从外部施加的外部磁场的影响而变动的耐性。1.结构关于实施方式1涉及的电流传感器的结构,利用图1、2进行说明。当测量的电压高于电流传感器的电压设置额定值时。山西漏电保护电流传感器厂家直销
因此可以精确地反映出被测电流的变化情况。武汉霍尔电流传感器
复制装置6_26将***检测线路10_26复制到***检测线路乙14_26,并且将第二检测线路12_26复制到第二检测线路乙16_26。连接装置8_26包括***端子18_26、第二端子20_26、第三端子22_26和第四端子24_26。有利地,借助于本发明的装置,可以将电流传感器2与第二电流传感器26并联耦接,而无需在机动车辆的电线束中实现编接。因此,如图3的示例所示,传感器2的***端子18经由***电传输线路30耦接到电子计算机28,第二端子20耦接到第二电流传感器26的***端子18_26,电流传感器2的第三端子20经由传输线路32耦接到电子计算机28,并且***第四端子24耦接到第二电流传感器26的第三端子22_26。当然,连接装置8也可以采用与图3所示的不同的形式。为了简化电流传感器2、26的连接技术,作为实施变型,巧妙地提出了集成电极化器(détrompeurélectrique)34,其使得能够优化电流传感器2、26的组装时间。实际上,如本领域技术人员所知,流过电流传感器2、26的电流是极化电流,亦即,该电流沿确定的方向流动,并且因此电流传感器2、26的良好运转需要遵循该极性。将在电流传感器2的情况中介绍电极化器34。电极化器34包括具有***二极管d1、第二二极管d2、第三二极管d3和第四二极管d4的二极管桥。武汉霍尔电流传感器
无锡纳吉伏科技有限公司在同行业领域中,一直处在一个不断锐意进取,不断制造创新的市场高度,多年以来致力于发展富有创新价值理念的产品标准,在江苏省等地区的电工电气中始终保持良好的商业口碑,成绩让我们喜悦,但不会让我们止步,残酷的市场磨炼了我们坚强不屈的意志,和谐温馨的工作环境,富有营养的公司土壤滋养着我们不断开拓创新,勇于进取的无限潜力,无锡纳吉伏科技供应携手大家一起走向共同辉煌的未来,回首过去,我们不会因为取得了一点点成绩而沾沾自喜,相反的是面对竞争越来越激烈的市场氛围,我们更要明确自己的不足,做好迎接新挑战的准备,要不畏困难,激流勇进,以一个更崭新的精神面貌迎接大家,共同走向辉煌回来!