动力总成测试中的早期故障检测是确保汽车产品质量和可靠性的关键环节。通过采用先进的传感器监测技术、数据分析与算法检测技术以及虚拟仿真技术等方法,可以及时发现并解决潜在的问题,缩短研发周期并降低开发成本。同时,面对数据处理与算法优化、复杂性与多样性以及测试环境与条件等挑战,需要不断创新和优化检测方法和技术手段以提高早期故障检测的准确性和效率。监控电驱动总成在整个耐久试验过程中的工作状态,包括振动加速度、转速、扭矩和油温。研究设备监测的故障变化与理论分析结果是否一致,能为产品的研发提供可靠的依据。β-STAR贝塔星监诊系统用于耐久测试工况下的动力总成或其零部件NVH外特性综合分析和早期故障诊断系统。发动机动力总成测试技术规范

安全性能验证:包括刹车测试、悬挂系统测试等,确保动力总成在紧急情况下能够稳定工作,保障驾驶员和乘客的安全。环保与节能:通过排放测试和燃油经济性测试,确保动力总成符合环保法规要求,降低汽车的油耗和碳排放,满足节能减排的社会需求。促进技术创新:动力总成测试是验证新技术、新材料和新工艺的重要手段,有助于推动汽车工程领域的技术进步和创新发展。提升市场竞争力:高质量的动力总成测试能够提升产品的市场竞争力,帮助汽车制造商在激烈的市场竞争中脱颖而出。宁波减速机动力总成测试设备基于测试数据,可以对动力总成进行针对性的优化和改进,提高其性能、可靠性和经济性。

在进行早期故障诊断时,通常会结合多种方法以提高诊断的准确性。例如,某款新型混合动力汽车在动力总成测试中,同时采用了振动分析和油液分析的方法。振动传感器检测到电机在特定转速下振动异常增大,而油液分析发现其中含有微量的铜屑。综合判断,初步确定为电机的轴承出现了早期磨损。又如,一款柴油发动机在测试时,通过声音检测到有间歇性的尖锐噪声,同时温度监测显示排气歧管局部温度过高。进一步检查发现是某个喷油嘴工作不正常,导致燃烧不充分。为了更有效地进行早期故障诊断,还需要不断改进测试技术和数据分析方法,并建立完善的故障诊断数据库和模型。
动力总成中的耐久性测试,早期故障诊断是通过将振动传感器采集到的原始信号为随时间变化的振动加速度值,通过傅里叶变换,时域信号可转换为频率信号,即不同频率对应的振动加速度值。为避免转速波动影响以及信号失真,将等时间间隔采集换成等角度采集,每周采样点固定,频域分析的图谱可转换为基于阶次分析的图谱,基于转速同步化的阶次分析便于趋势分析与故障定位。图1为信号转换示意图。齿轮啮合振动会导致轴的扭曲及弯曲振动,弯曲振动将通过轴承等机械部件传递到总成的外壳表面。动力总成噪声振动测试,评估传动系统和整车的噪声和振动水平,确保其在可接受范围内。

为提高新能源汽车用电驱动系统的功率密度,驱动电机的转速越来越高,多数转速均达到了16 000 r/min及以上,对生产工艺要求越来越高,电机在实车运行的稳定性和故障率也倍受关注。减速器作为动力系统的重要一环,影响着整车的舒适性、动力性和经济性,新能源汽车一般为单档减速器,较传统车用的变速器简单,但国产减速器的整体性能与可靠性仍与国外产品有一定差距。新能源汽车用的电驱动动力总成测试,即电机、电控和减速器三合一产品为近几年的新型结构,其可靠性有待进一步验证。新能源汽车的开发周期短,电驱动总成的开发周期也被**压缩,利用早期故障分析设备提前监测出故障的趋势和位置,可快速定位故障位置,提前更换新方案,节约产品开发周期。在动力总成耐久测试中的早期故障诊断技术,可以帮助客户更深入地获取产品故障特征信息。绍兴电机动力总成测试技术规范
动力总成测试是评估系统性能和质量的重要环节,它涵盖了多个方面测试,以确保能够满足设计要求和使用条件。发动机动力总成测试技术规范
以新能源汽车电驱动动力总成为例,其耐久试验中的早期故障诊断通常包括以下几个步骤:试验准备:将电驱动总成安装在试验台架上,连接好传感器和数据采集系统。数据采集:在试验过程中实时采集振动、温度等参数的数据。信号分析:对采集到的数据进行信号转换和分析,识别出潜在的故障特征。故障诊断:根据故障特征判断故障类型和位置,并制定相应的处理措施。验证与改进:通过拆机验证故障诊断的准确性,并根据诊断结果对设计、制造或装配过程进行改进。发动机动力总成测试技术规范