新闻中心
您当前位置: 首页 > 新闻中心
  • 30 01
    湖北风电设备AI振动噪声故障诊断传感器

    齿轮箱作为机械传动系统中的重要部件,其性能直接关系到设备的整体运行效率和稳定性。采用AI振动噪声诊断技术对齿轮箱进行监控,能够捕捉到齿轮啮合过程中产生的细微振动和噪声信号,这些信号反映出齿轮磨损、齿面剥落或润滑不足等问题。该技术通过智能感知装置收集数据,结合算法对信号进行深入分析,识别出正常运行与异常状态之间的细微差异。相比传统的周期性检... 【查看详情】

  • 30 01
    杭州变速箱生产下线NVH测试提供商

    NVH生产下线NVH测试,柔性生产线需兼容燃油、混动、纯电等多类型动力总成测试,不同车型的传感器布局、判据阈值差异***。例如,某混线车间切换纯电驱与燃油变速箱测试时,需调整加速度传感器在电机壳体与曲轴轴承的安装位置,传统视觉定位校准需 5 分钟,远超 15 分钟换型目标;且不同车型的阶次异常判定标准(如纯电驱关注 48 阶电磁力波,燃油... 【查看详情】

  • 30 01
    无锡电驱动生产下线NVH测试噪音

    生产下线NVH测试是汽车出厂前保障驾乘品质的关键环节,其**目标是及时识别车辆在噪声、振动及声振粗糙度方面的潜在问题,避免不合格产品流入市场。在汽车制造业中,NVH性能已成为衡量车辆舒适性的重要指标,直接影响消费者的购车体验与品牌口碑。下线NVH测试通过标准化的检测流程,对车辆在静态和动态工况下的振动噪声数据进行采集与分析,涵盖发动机运转... 【查看详情】

  • 29 01
    常州电控生产下线NVH测试异音

    国产传感器的规模化应用推动下线 NVH 测试成本优化。采用矽睿科技 QMI8A02z 六轴传感器的测试设备,在保持 0.1-20000Hz 频响范围与 ±0.5% 灵敏度误差的同时,较进口方案成本降低 35%。配合共进微电子晶圆级校准技术,传感器一致性达到 99.2%,确保不同测试工位间数据可比。某新势力车企应用该方案后,年测试成本降低超... 【查看详情】

  • 29 01
    南京控制器生产下线NVH测试仪

    生产下线NVH测试标准的制定是确保测试结果一致性和可靠性的基础,不同车企会根据自身的产品定位、车型特点及市场需求,制定详细的NVH测试标准体系。该标准体系通常涵盖测试工况、测试设备技术参数、数据采集方法、评价指标及合格阈值等内容。例如,在噪声评价方面,会规定不同工况下驾驶室内驾驶员耳部位置的最大允许噪声声压级(如怠速时不超过55分贝,高速... 【查看详情】

  • 29 01
    杭州电机和动力总成生产下线NVH测试系统

    生产下线 NVH 测试前,需对测试设备进行***检查,确保传感器灵敏度达标、数据采集仪运行正常。同时,要确认被测车辆处于标准状态,油量、胎压等符合规定,消除外界因素对测试结果的干扰。测试过程中,操作人员需严格遵循既定流程,按照规范连接传感器与车辆接口,避免因接线松动或错误导致信号传输异常。实时监控测试数据,一旦发现数值超出正常范围,立即暂... 【查看详情】

  • 29 01
    上海EOL生产下线NVH测试方案

    生产下线 NVH 测试绝非研发阶段测试的简单简化,而是一套针对大规模制造场景设计的质量控制体系。与研发阶段聚焦设计优化的 NVH 测试不同,生产下线测试面临着三重独特挑战:首先是 100% 全检的效率要求,每条产线每天需处理数百至上千台产品,单台测试时间通常控制在 3-5 分钟内;其次是复杂生产环境的抗干扰需求,车间背景噪声、机械振动等都... 【查看详情】

  • 29 01
    南京电驱动生产下线NVH测试技术

    生产下线NVH数据采集系统是测试的 "神经中枢"。传统有线采集方式在生产线环境下易受干扰且布线繁琐,研华的无线 I/O & 传感器 WISE 系列解决了这一痛点,配合高速数据采集 DAQ 系列产品,构建起从边缘感知到数据汇聚的可靠传输网络。这套系统的关键优势在于高同步性 —— 振动信号与转速信号的精确时间对齐,是后续阶次分析等高级诊断的基... 【查看详情】

  • 29 01
    上海智能生产下线NVH测试检测

    波束成形与声学相机技术颠覆了传统声源定位方式。产线测试台架集成的 24 通道麦克风阵列,可在 3 分钟内生成噪声热点彩色云图,直观定位减速器齿轮啮合异常的空间位置。相较传统声强法,其效率提升 5 倍,且对 1500Hz 以上高频噪声的定位误差控制在 5cm 内。某工厂应用该技术后,将电驱异响溯源时间从 2 小时缩短至 15 分钟,***提... 【查看详情】

  • 29 01
    浙江设备异响检测系统

    人工智能技术的融入正推动异响异音检测向智能化、自动化转型。通过采集海量正常与异常声信号数据,训练深度学习模型,可实现异响的自动识别、分类与分级。检测时,AI 系统通过麦克风阵列采集声信号,经预处理后提取梅尔频率倒谱系数、频谱特征等关键参数,与训练模型对比后,快速输出异响类型、置信度及可能的故障部件。例如,某车企应用的 AI 异响检测系统,... 【查看详情】

  • 29 01
    四川发电设备AI振动噪声故障诊断特点

    电机作为众多机械系统的重要部件,其运行状态直接关系到设备的整体性能。AI振动噪声诊断技术基于对电机运行时产生的振动和声音信号进行采集和分析,通过深度学习等智能算法提取特征,识别出正常和异常状态的差异。具体来说,系统会持续监测电机轴承、转子和定子等关键部位的振动波形,捕捉频率、幅值及波形变化等信息。通过训练模型,诊断系统能够发现微小的异常波... 【查看详情】

  • 28 01
    四川数据驱动异响检测系统工具

    随着工业 4.0、人工智能等技术的快速发展,异响异音检测技术正朝着智能化、网络化、一体化方向演进,涌现出一系列创新方向。在智能化方面,深度学习算法的应用使检测模型能够自动学习复杂异响特征,无需人工提取特征,大幅提升了故障识别的准确率与泛化能力,例如基于卷积神经网络(CNN)的声纹识别模型,可直接对原始声音信号进行处理,实现端到端的故障诊断... 【查看详情】

1 2 3 4 5 6 7 8 ... 49 50
信息来源于互联网 本站不为信息真实性负责