在电路的控制环节,设计了硬件控制电路并编写了相应的控制程序。硬件电路基于DSP控制芯片,主要由电源模块、采样及A/D转换模块、DSP控制模块、PWM输出模块、驱动电路模块构成。在程序方面,本文着重对移相脉波产生的方式、PID反馈控制的策略进行了研究,同时也完成了信号采集、模数转换、保护控制等模块的程序编写和调试。然后按照补偿电源的参数要 求,选择了基于 TMS320F2812(DSP)的移相全桥变换电路作为补偿电源的拓扑结 构。讨 论了长脉冲高稳定磁场的研究意义、发展现状和现今的难点,基于存在的问题提出 了对强磁场电源系统的优化, 提出了补偿电源的方案。电压传感器是一种用于计算和监测对象中电压量的传感器。北京内阻测试仪电压传感器联系方式
整个控制板由五个模块构成:电源模块、采样及A/D转换模块、DSP控制模块、PWM输出模块、驱动电路模块。数字控制电路中任何一个芯片的工作都离不开电源,其中DSP芯片和A/D芯片对电源的要求很高,电源发生过电压、欠电压、功率不够或电压波动等都可能导致芯片不能正常工作甚至损坏。对于任何一个PCB板,电源模块设计的好坏都直接影响着整个控制板工作的稳定。在设计电源模块的时候,不仅要为整个控制板提供其所需要的所有幅值的电压,还要保证每一个幅值的电压值稳定、纹波小,必要时须电气隔离,并且电源模块须功率足够。珠海大量程电压传感器联系方式那种非导体材料被称为介电材料。
磁体自身电阻较小,加在磁体两端的高电压在磁体中产生大电流,产生强磁场。但由于磁体电阻不可能为零,在通过瞬间的大电流时,磁体本身会瞬间发热产生高温,其自身的电阻也会随着温度的升高进一步增大,增大的电阻在大电流通过时更进一步发热。如此,为了真正让磁体通过脉冲式高稳定度大电流,并不能简单给磁体配置一个脉冲式高稳定度的电压源,而是需要一个脉冲式、纹波小、可控、快速反应的电源。强磁场磁体的电源不用于其它装置的供电电源,在需要产生磁场的时候,电能以很快的速度释放至磁体产生强磁场。由于瞬时功率很大,若从电网中取电必然会对电网造成冲击。故而需要电源系统在较长时间内储存大量的能量,然后以此储能电源系统作为缓冲来为实验提供大功率的瞬时电能。
首先滞后桥臂上开关管零电压开通时,只有谐振电感提供换流的能量。谐振电感储能必须大于滞后桥臂上谐振电容储能加上变压器原边寄生电容储能,在实际当中, 变压器的原边匝数较少, 且原边大都用多股漆包线并绕。同时在滞后桥臂上开关管开通时,原边电流近似为恒定,须在开关管触发导通前谐振电容完成充放电。现在死区时间取为1.2us,结合滞后桥臂上开关管工况,谐振电感不仅为谐振电容提供充放电的能量,还向电源反馈能量,故电流ip小于超前桥臂上开关管开通时对应的电流,计算可得:Ip(lag)==10.6μH。结合谐振电感的参数协调确定谐振电容的值为10μH。分为电阻分压式和电容分压式,将初级电压直接转化为测量仪表可用的低压信号。
程序首先对系统初始化,内部定时器开始计数,计数到产生定时器中断,主程序进入AD中断子程序。AD片选信号置低,子程序实现对AD的初始化,初始化的主要任务是控制AD的输入通道。AD的转换开始信号由DSP的计时器控制,DSP循环计数,当计数器计数到设定值则进入计时中断,中断子程序中给AD一个低电平脉冲信号,AD开始转换,转换完成后AD本身产生一个低电平信号告知DSP转换完成,DSP接收到低电平信号开始读取数据,读取完设定的采样个数后打开DSP总中断发送数据至内部处理器计算处理。如此循环往复,实现了对输入电压电流信号的实时采集。传感器是能够感知或识别特定类型的电信号或光信号并对其作出反应的装置。南京循环测试电压传感器联系方式
差和高的耐压值,另外,高压侧与低压侧没有隔离,存在安全隐患;北京内阻测试仪电压传感器联系方式
在科学实验中, 产生强磁场的磁体实际是一个大电感线圈,由大容量的电源系 统瞬时放电, 通过给磁体提供瞬间的大电流,在磁体中产生响应的强磁场。实验中磁体可以等效为电阻Rm和大电感Lm串联,产生的磁场强度和通过电感的电流时呈线性关系的,要想得到高稳定度的脉冲平顶磁场,我们相应的给磁体提供脉冲平顶的大电流。然而上述只是建立在理想的物理模型上得到的理想结果。在工程实践中, 提供 给磁体的大电流实际是给磁体提供一个脉冲式高稳定度的直流电压。北京内阻测试仪电压传感器联系方式