电动车的电机与减速器系统异响检测有其独特性。技术人员会将车辆连接到测功机,在 0-120 公里 / 小时的不同转速区间内测试,通过声学传感器采集声音信号。当电机处于低速运转时,若出现 “啸叫” 声,可能是定子与转子之间的气隙不均匀;高速状态下的 “呜呜” 声,需检查轴承的润滑和游隙。减速器的检测则聚焦于齿轮啮合,正常啮合应是平稳的 “沙沙” 声,若出现 “咔咔” 的冲击声,可能是齿轮齿面磨损或啮合间隙过大。此外,电机控制器的冷却风扇也是异响源之一,若风扇叶片与壳体摩擦,会产生 “哒哒” 声。由于电动车没有发动机噪音掩盖,这些异响会更明显,因此检测精度要求更高,通常需将噪音控制在 60 分贝以下。针对电驱电机冷却风扇执行器的轴承异响检测,采用激光测振仪非接触测量扇叶转子位移。状态异响检测系统供应商

异响检测数据的分析与应用:下线异响检测所获取的数据具有重要价值。对检测得到的声学和振动数据进行深入分析,可挖掘出大量信息。通过长期积累数据,建立产品的正常运行数据模型,当新的产品检测数据与之对比出现偏差时,能快速预警潜在问题。例如在电机生产中,若发现一批次电机检测数据中某个频率段的声音幅值普遍偏高,经分析可能是某一生产环节导致电机转子动平衡出现问题,据此可及时调整生产工艺,避免更多有质量问题的产品流出。同时,这些数据还可用于产品质量追溯,当售后出现异响投诉时,通过查询生产下线时的检测数据,能快速定位问题产品的生产时间、批次以及可能涉及的生产设备和工艺参数,为解决问题提供有力依据。状态异响检测系统供应商多执行器协同工作的电驱系统中,电机控制器执行器与冷却风扇执行器的异响耦合检测,多参数耦合分析算法。

人工检测的要点与局限:人工检测在某些场景下仍是下线异响检测的手段之一。训练有素的检测人员凭借经验,使用听诊器等工具贴近产品关键部位聆听声音。比如在电机检测中,检测人员可通过听电机运转声音的节奏、音调变化,初步判断是否有异常。然而,人工检测存在明显局限。人的听力易受环境噪声干扰,在嘈杂的生产车间,微小的异响可能被忽略。而且不同检测人员对声音的敏感度和判断标准存在差异,主观性强,长时间检测还容易导致疲劳,降低检测的准确性和稳定性。据统计,人工检测的误判率有时可达 10% - 20% ,难以满足大规模、高精度的生产检测需求。
制动系统异响检测需分阶段进行。冷车状态下轻踩刹车,若 “尖叫” 声在 3-5 次制动后消失,可通过砂纸打磨刹车片表面硬点(粒度 80 目)解决。若热车后仍有异响,需拆卸刹车片测量厚度,当剩余厚度低于 3mm(磨损极限)时必须更换。同时检查刹车盘磨损情况,用百分表测量端面跳动量,超过 0.05mm 需进行光盘加工。对于电子驻车制动系统,需通过诊断仪执行制动片复位程序,观察电机工作时是否有 “嗡嗡” 异响,若伴随卡滞需检查拉线润滑状态,可涂抹**制动润滑脂(耐温 - 40 至 200℃)。检测过程中需保持制动盘清洁,避免油污污染摩擦面。电驱电机控制器执行器的线圈异响检测,通过 AI 深度学习模型比对声纹特征库,识别准确率达 98.5%。

转向系统的异响与 NVH 表现直接影响驾驶操控感。当车辆转向时,若转向助力泵故障、转向拉杆球头松动或转向节磨损,会出现 “咯噔”“咯咯” 等异常声音,同时可能伴随方向盘振动。在 NVH 检测方面,可运用转向系统 NVH 测试装置,对转向系统进行台架试验,模拟不同转向角度、转向速度和负载条件下的工作状态,测量转向助力泵的压力波动、转向拉杆的受力变化以及转向系统关键部位的振动响应。通过道路试验,采集车辆在实际行驶中转向时的振动与噪声数据,结合主观评价,***评估转向系统的 NVH 性能,及时发现并解决转向系统的异响问题,确保驾驶操作的平稳与舒适 。新能源汽车异响检测发现,当电机阶次噪声在 2-8kHz 频段的 TNR 值超过 5dB 时,需通过电磁优化降低啸叫。状态异响检测系统供应商
电机异响检测需先区分机械异响(如轴承摩擦)与电磁异响(如绕组松动),避免误判故障类型。状态异响检测系统供应商
不同行业下线异响检测的差异:不同行业的产品下线异响检测存在***差异。在航空航天领域,飞机发动机的下线异响检测要求极高的精度和可靠性,因为发动机故障可能导致严重的飞行事故。检测时不仅要监测常规的声学和振动信号,还需运用先进的无损检测技术,如超声检测、红外热成像检测等,检测发动机内部部件的微小缺陷,确保发动机在极端工况下也能安全运行。而在家具制造行业,家具下线异响检测主要关注家具的组装是否牢固,如柜门开关时是否有卡顿、异响,桌椅在受力时是否晃动并产生异常声音。检测方法相对简单,主要依靠人工直观检查和简单的操作测试,这是由不同行业产品的功能、结构复杂性以及使用环境的差异所决定的。状态异响检测系统供应商