激光雷达,也称光学雷达(LIght Detection And Ranging)是激光探测与测距系统的简称,它通过测定传感器发射器与目标物体之间的传播距离,分析目标物体表面的反射能量大小、反射波谱的幅度、频率和相位等信息,从而呈现出目标物精确的三维结构信息。自上世纪60年代激光被发明不久,激光雷达就大规模发展起来。而测距原理上目前主要以飞行时间(time of flight)法为主,利用发射器发射的脉冲信号和接收器接受到的反射脉冲信号的时间间隔来计算和目标物体的距离。激光雷达在野生动物保护中用于监测动物的活动范围和习性。隧道激光雷达定制价格

MEMS:MEMS激光雷达通过“振动”调整激光反射角度,实现扫描,激光发射器固定不动,但很考验接收器的能力,而且寿命同样是行业内的重大挑战。支撑振镜的悬臂梁角度有限,覆盖面很小,所以需要多个雷达进行共同拼接才能实现大视角覆盖,这就会在每个激光雷达扫描的边缘出现不均匀的畸变与重叠,不利于算法处理。另外,悬臂梁很细,机械寿命也有待进一步提升。振镜+转镜:在转镜的基础上加入振镜,转镜负责横向,振镜负责纵向,满足更宽泛的扫射角度,频率更高价格相比前两者更贵,但同样面临寿命问题。固态激光雷达厂家精选混合固态技术赋能,Mid - 360 实现 360° 全向超大视场角感知。

原理,激光雷达( Light Detection and Ranging,LIDAR)是激光检测和测距系统的简称,通过对外发射激光脉冲来进行物体检测和测距。激光雷达采用飞行时间(Time of Flight,TOF)测距,发射器先发送一束激光,遇到障碍物后反射回来,由接收器接收,然后通过计算激光发送和接收的时间差,得到目标和自己的相对距离。如果采用多束激光并且360度旋转扫描,就可以得到整个环境的三维信息。激光雷达扫描出来的是一系列的点,因此激光雷达扫描出来的结果也叫“激光点云”。
这类形体对现实世界的表达能力有限,绝大部分目标难以用这些形体或其组合来近似。后续研究主要集中于三维自由形态目标的识别,所谓自由形态目标,即表面除了顶点、边缘以及尖拐处之外处处都有良好定义的连续法向量的目标(如飞行器、汽车、轮船、建筑物、雕塑、地表等)。由于现实世界中的大部分物体均可认为是自由形态目标,因此三维自由形态目标识别算法的研究较大程度上扩展了识别系统的适用范围。在过去二十余年间,三维目标识别任务针对的数据量不断增加,识别难度不断上升,而识别率亦不断提高。安装布置灵活,览沃 Mid - 360 满足移动机器人各种复杂安装场景。

国外厂商在激光器和探测器行业耕耘较久,产品的成熟度和可靠性上有更多的实践经验和优势,客户群体也更为普遍。国内厂商近些年发展迅速,产品性能已经基本接近国外供应链水平,并已经有通过车规认证(AEC-Q102)的国产激光器和探测器出现,元器件的车规化是车规级激光雷达实现的基础,国内厂商能够满足这一需求。相比国外厂商,国内厂商在产品的定制化上有较大的灵活性,价格也有一定优势。光学部件方面,激光雷达公司一般为自主研发设计,然后选择行业内的加工公司完成生产和加工工序。光学部件国内厂商的技术水平已经完全达到或超越国外供应链的水准,且有明显的成本优势,已经可以完全替代国外供应链和满足产品加工的需求。探测距离 70 米 @80% 反射率,览沃 Mid - 360 抗室外强光性能佳。单线激光雷达
Mid - 360 以 360°x59° 超广 FOV,增强移动机器人复杂环境感知力。隧道激光雷达定制价格
线数,线数越高,表示单位时间内采样的点就越多,分辨率也就越高,目前无人驾驶车一般采用32线或64线的激光雷达。分辨率,分辨率和激光光束之间的夹角有关,夹角越小,分辨率越高。固态激光雷达的垂直分辨率和水平分辨率大概相当,约为0.1°,旋转式激光雷达的水平角分辨率为0.08°,垂直角分辨率约为0.4°。探测距离,激光雷达的较大测量距离。在自动驾驶领域应用的激光雷达的测距范围普遍在100~200m左右。测量精度,激光雷达的数据手册中的测量精度(Accuracy)常表示为,例如±2cm的形式。精度表示设备测量位置与实际位置偏差的范围。隧道激光雷达定制价格