我们可以根据 LiDAR 能描绘出稀疏的三维世界的特点,而扫描得到的障碍物点云通常又比背景更密集,通过分类聚类的方法可以利用其进行感知障碍物。而随着深度学习带来的检测和分割技术上的突破,LiDAR 已经能做到高效的检测行人和车辆,输出检测框,即 3D bounding box,或者对点云中的每一个点输出 label,更有甚者在尝试使用 LiDAR 检测地面上的车道线。在三维目标识别的对象方面,较初研究主要针对立方体、柱体、锥体以及二次曲面等简单形体构成的三维目标。Mid - 360可达70 米 @80% 反射率探测,适应室内外不同光照。轨道交通激光雷达供应商

MEMS激光雷达模组,光学相控阵式(OPA),相控阵发射器由若干发射接收单元组成阵列,通过改变加载在不同单元的电压,进而改变不同单元发射光波特性,实现对每个单元光波的单独控制,通过调节从每个相控单元辐射出的光波之间的相位关系,在设定方向上产生互相加强的干涉从而实现强度高光束,而其他方向上从各个单元射出的光波彼此相消。组成相控阵的各相控单元在程序的控制下可使一束或多束强度高光束按设计指向实现空域扫描。但光学相控阵的制造工艺难度较大,这是由于要求阵列单元尺寸必需不大于半个波长,普通目前激光雷达的任务波长均在1微米左右,这就意味着阵列单元的尺寸必需不大于500纳米。而且阵列数越多,阵列单元的尺寸越小,能量越往主瓣集中,这就对加工精度要求更高。此外,材料选择也是十分关键的要素。安徽激光雷达Mid - 360 距离探测可为 10cm,小盲区助力嵌入式无盲区安装。

激光雷达的市场概况:全球市场概况,激光雷达过去用于工业测绘、气象监测等领域,未来车载领域将成为较重要细分。气象监测、地形测绘与车载、机器人领域对激光雷达的技术要求不同,分属不同细分市场。下游需求刺激行业快速发展,激光雷达市场规模有望达百亿美元。受益于无人驾驶、高级辅助驾驶(ADAS)和服务机器人领域的需求,有望迎来高速增长期。据Velodyne预测,2022年智能驾驶将占总市场规模的60.5%,成为激光雷达产业较大的增长极,工业、无人机、机器人领域各占比24.4%、8.4%、4.2%。
不同车载传感器的比较,目前,激光雷达、毫米波雷达和摄像头是公认的自动驾驶的三大关键传感器技术。从技术上看,激光雷达与其他两者相比具备强大的空间三维分辨能力。中国汽车工程学会、国汽智联汽车研究院编写的《中国智能网联汽车产业发展报告(2019)》称,当前在人工智能的重要应用场景智能网联汽车的自动驾驶和辅助驾驶领域中,激光雷达是实现环境感知的主要传感器之一。报告认为,在用于道路信息检测的传感器中,激光雷达在探测距离、精确性等方面,相比毫米波雷达具有一定的优势。激光雷达的智能化处理提高了数据解析的自动化水平。

关于实际量程:雷达对特定目标的实际量程会受到如下因素的影响:1、目标漫反射率,目标漫反射率不但与材质有关,也与表面朝向有关。目标漫反射率越高,实际量程就越远;2、反射面积,目标表面被激光光斑覆盖的面积。覆盖面积越大,实际测量距离越远;3、透光罩脏污程度,雷达的透光罩脏污会造成透光性能下降,透光性能下降得越多,测量能力越差,透光率下降至 60%时,测量能力可能完全失效;4、大气条件,雷达的实际测量能力同时受到大气条件的影响,特别是在户外工作时。大气的光传播能力越差,雷达的实际测量能力越低。在极端天气条件 (例如浓雾)下,测量能力会完全失效。览沃 Mid - 360 体积小巧,可为 10cm 小盲区,嵌入式安装实现无盲区覆盖。轨道交通激光雷达供应商
激光雷达通过多角度扫描,获取目标的完整信息。轨道交通激光雷达供应商
激光雷达对策:在实际使用中,对环境中的透明介质,特别是表面接近镜面的透明介质,需要做特殊处理,避免产生不稳定或错误的测量结果。具体的处理方式可以是对介质表面做漫反射半透明处理,降低透明度和反射能力,或者在处理测量数据时对这些位置做屏蔽。当雷达对镜面目标进行测量时,需要注意!!只当目标表面与入射激光垂直时才能有效测量,如果激光入射角不垂直,其漫反射率很低,导致无法有效测量,实际测量到的结果是镜面反射光路上的镜像目标距离,雷达投射在镜面目标产生了全反射,全反射光投射在目标,雷达实际测试出距离是虚线边框目标距离。轨道交通激光雷达供应商