给定两个来自不同坐标系的三维数据点集,找到两个点集空间的变换关系,使得两个点集能统一到同一坐标系统中,这个过程便称为配准。配准的目标是在全局坐标框架中找到单独获取的视图的相对位置和方向,使得它们之间的相交区域完全重叠。对于从不同视图(views)获取的每一组点云数据,点云数据很有可能是完全不相同的,需要一个能够将它们对齐在一起的单一点云模型,从而可以应用后续处理步骤,如分割和进行模型重建。目前对配准过程较常见的主要是 ICP 及其变种算法,NDT 算法,和基于特征提取的匹配。轻巧的 Mid - 360 便于隐藏式布置,契合移动机器人设计需求。轨道交通激光雷达参考价

原理,激光雷达( Light Detection and Ranging,LIDAR)是激光检测和测距系统的简称,通过对外发射激光脉冲来进行物体检测和测距。激光雷达采用飞行时间(Time of Flight,TOF)测距,发射器先发送一束激光,遇到障碍物后反射回来,由接收器接收,然后通过计算激光发送和接收的时间差,得到目标和自己的相对距离。如果采用多束激光并且360度旋转扫描,就可以得到整个环境的三维信息。激光雷达扫描出来的是一系列的点,因此激光雷达扫描出来的结果也叫“激光点云”。AMR激光雷达设备具备主动抗串扰能力,Mid - 360 在复杂室内雷达环境互不干扰。

反射强度,LiDAR 返回的每个数据中,除了根据速度和时间计算出的反射强度其实是指激光点回波功率和发射功率的比值。而激光的反射强度根据现有的光学模型,可以较好的刻画为以下模型。我们可以看到,激光点的反射率和距离的平方成反比,和物体的入射角成反比。入射角是入射光线与物体表面法线的夹角。时间戳和编码信息,LiDAR 通常从硬件层面支持授时,即有硬件 trigger 触发 LiDAR 数据,并支持给这一帧数据打上时间戳。通常会提供支持三种时间同步接口,IEEE 15882008同步,遵循精确时间协议,通过以太网对测量以及系统控制实现精确的时钟同步。
当前所面临的挑战在于如何区分来自周边其他LiDAR设备的信号,而各种信号调制和隔离方法也正在积极研发中。LiDAR系统的成本和维护——这类系统相比一些替代技术所使用的传感器类型更加昂贵,当然持续不断的开发工作也在积极进行,为满足其大规模使用的需要而开发生产成本更低的系统。抑制非目标对象的回波——类似于抑制之前提到的大气虚假信号。但是这也可能会出现在空气质量良好的情况下。应对这一挑战通常涉及在不同的目标距离处,以及在LiDAR接收器的视场范围之内使光束尺寸尽可能更小。在某些领域,激光雷达被用于侦察和目标识别。

分类,激光雷达按结构不同大致可以分为:机械旋转激光雷达、混合半固态激光雷达和全固态激光雷达(Flash快闪和OPA相控阵,统称为非扫描式)。(一)机械旋转激光雷达,机械式激光雷达体积大、成本较高、装配难。它通过旋转实现横向360度的覆盖面,通过内部镜片实现垂直角度的覆盖面,同比有着更耐用稳定的特点,所以我们看到的自动驾驶路试车大多采用这种类型,雷达在车顶不停的在旋转完成横向扫描,靠增加激光束,实现纵向宽泛的扫描。(二)混合半固态激光雷达。按照扫描方式分为:转镜、硅基MEMS、振镜+转镜、旋转透射棱镜。激光雷达在农业领域用于监测作物生长情况。泰览Tele-15激光雷达批发
体积小巧的 Mid - 360,轻松嵌入,为机器人外观一体化添可能。轨道交通激光雷达参考价
激光雷达按照测距方法可以分为飞行时间(TimeofFlight,ToF)测距法、基于相干探测FMCW测距法、以及三角测距法等,其中ToF与FMCW能够实现室外阳光下较远的测程(100~250m),是车载激光雷达的好选择方案。ToF是目前市场车载中长距激光雷达的主流方案,未来随着FMCW激光雷达整机和上游产业链的成熟,ToF和FMCW激光雷达将在市场上并存。根据激光雷达按测距方法分类:ToF法:通过直接测量发射激光与回波信号的时间差,基于光在空气中的传播速度得到目标物的距离信息,具有响应速度快、探测精度高的优势。FMCW法:将发射激光的光频进行线性调制,通过回波信号与参考光进行相干拍频得到频率差,从而间接获得飞行时间反推目标物距离。FMCW激光雷达具有可直接测量速度信息以及抗干扰(包括环境光和其他激光雷达)的优势。轨道交通激光雷达参考价