辅助驾驶,在目前的L2/L3级高级辅助驾驶中,激光雷达可覆盖前向视场(水平视场角覆盖60°到120°)以实现自动跟车或者高速自适应巡航等功能。通过发射信号和反射信号的对比,构建出点云图,从而实现诸如目标距离、方位、速度、姿态、形状等信息的探测和识别。除了传统的障碍物检测以外,激光雷达还可以应用于车道线检测。优点在于测距远、精度高,获取信息丰富,抗源干扰能力强。自动驾驶,未来,L4/L5级无人驾驶应用的实现,有赖于激光雷达提供的感知信息。激光雷达是一种可以扫描周围环境并生成三维图像的传感器。它可以被用于识别障碍物、构建地图和定位车辆等应用场景。该级别应用需要面对复杂多变的行驶环境,对激光雷达性能水平要求较高,在要求360°水平扫描范围的同时,对于低反射率物体的较远测距能力需要达到200m,且需要更高的线数以及更密的点云分辨率;同时为了减少噪点还需要激光雷达具有抵抗同环境中其他激光雷达干扰的能力。激光雷达能够快速捕获运动目标的动态信息。广东泰览Tele-15激光雷达市价

参数指标:(一)视场角,视场角决定了激光雷达能够看到的视野范围,分为水平视场角和垂直视场角,视场角越大,表示视野范围越大,反之则表示视野范围越小。以图3中的激光雷达为例,旋转式激光雷达的水平视场角为360°,垂直视场角为26.9°,固态激光雷达的水平视场角为60°,垂直视场角为20°。(二)线数,线数越高,表示单位时间内采样的点就越多,分辨率也就越高,目前无人驾驶车一般采用32线或64线的激光雷达。(三)分辨率,分辨率和激光光束之间的夹角有关,夹角越小,分辨率越高。固态激光雷达的垂直分辨率和水平分辨率大概相当,约为0.1°,旋转式激光雷达的水平角分辨率为0.08°,垂直角分辨率约为0.4°。三维激光雷达厂家供应激光雷达在无人仓储系统中实现货物的精确定位。

脉冲同步(PPS),脉冲同步通过同步信号线实现数据同步。GPS同步(PPS+UTC),通过同步信号线和 UTC 时间(GPS 时间)实现数据同步。然后我们从 LiDAR 硬件得到一串数据包,需要过一次驱动才能将其解析成点云通用的格式,如 ROSMSG 或者 pcl 点云格式,以目前较普遍的旋转式激光雷达的数据为例,其数据为 10hz,即 LiDAR 在 0.1s 时间内转一圈,并将硬件得到的数据按照不同角度切成不同的 packet,以下便是一个 packet 数据包定义示意图。每一个 packet 包含了当前扇区所有点的数据,包含每个点的时间戳,每个点的 xyz 数据,每个点的发射强度,每个点来自的激光发射机的 id 等信息。
相比于半固态式和固态式激光雷达,机械旋转式激光雷达的优势在于可以对周围环境进行360°的水平视场扫描,而半固态式和固态式激光雷达往往较高只能做到120°的水平视场扫描,且在视场范围内测距能力的均匀性差于机械旋转式激光雷达。由于无人驾驶汽车运行环境复杂,需要对周围360°的环境具有同等的感知能力,而机械旋转式激光雷达兼具360°水平视场角和测距能力远的优势,目前主流无人驾驶项目纷纷采用了机械旋转式激光雷达作为主要的感知传感器。管道检测使用激光雷达探查内部,预防泄漏等事故。

不同车载传感器的比较,目前,激光雷达、毫米波雷达和摄像头是公认的自动驾驶的三大关键传感器技术。从技术上看,激光雷达与其他两者相比具备强大的空间三维分辨能力。中国汽车工程学会、国汽智联汽车研究院编写的《中国智能网联汽车产业发展报告(2019)》称,当前在人工智能的重要应用场景智能网联汽车的自动驾驶和辅助驾驶领域中,激光雷达是实现环境感知的主要传感器之一。报告认为,在用于道路信息检测的传感器中,激光雷达在探测距离、精确性等方面,相比毫米波雷达具有一定的优势。览沃 Mid - 360 体积小巧,可为 10cm 小盲区,嵌入式安装实现无盲区覆盖。江西AGV激光雷达
探测距离 70 米 @80% 反射率,览沃 Mid - 360 抗室外强光性能佳。广东泰览Tele-15激光雷达市价
目前激光雷达厂商主要使用波长为 905nm 和 1550nm 的激光发射器,波长为 1550nm 的光线不容易在人眼液体中传输,这意味着采用波长为 1550nm 激光的激光雷达的功率可以相当高,而不会造成视网膜损伤。更高的功率,意味着更远的探测距离,更长的波长,意味着更容易穿透粉尘雾霾。但受制于成本原因,生产波长为1550纳米的激光雷达,要求使用昂贵的砷化镓材料。厂商更多选择使用硅材料制造接近于可见光波长的 905nm 的激光雷达,并严格限制发射器的功率,避免造成眼睛的长久性损伤。广东泰览Tele-15激光雷达市价