β- 葡聚糖是鲎试剂(LAL)检测内毒素的常见干扰物,可活化 LAL 中的 G 因子通路,导致假阳性结果。干扰多见于含植物源原料的样品(如中药注射剂)、生物发酵产物或环境真菌污染的样品。消除方法包括:使用特异性 LAL 试剂(如添加葡聚糖抑制剂的 LAL),其只对内毒素敏感而不受 β- 葡聚糖影响;采用加热处理(如 80℃加热 10 分钟)破坏 β- 葡聚糖结构;或通过亲和层析去除样品中的 β- 葡聚糖。检测时需设置 β- 葡聚糖阳性对照,若对照反应阳性而内毒素标准品无反应,表明存在干扰,需优化前处理步骤后重新检测。
细菌内毒素检测中,rCR 对高蛋白(如单抗、FBS)、细胞培养上清等特殊样本适配性好。医疗器械内毒素检测结果判定
医疗器械(如输液器、注射器、植入式设备)若携带内毒素,可能通过血液、组织接触引发异常反应或炎症反应。其检测需遵循 “模拟临床使用” 原则:采用浸提液(如 0.9% 氯化钠溶液或注射用水)在 37℃±1℃下浸提器械表面内毒素,再通过 LAL 或 rFC 法检测浸提液。不同器械的内毒素限值差异明显:一次性输液器需≤0.5 EU/device,植入式心脏瓣膜则要求更严格(≤0.06 EU/device)。检测时需注意器械材质对浸提效率的影响,如塑料类器械可能吸附内毒素,需优化浸提时间(通常≥1 小时)或采用超声辅助提取,确保残留内毒素被充分检出。
北京原料药内毒素检测方法验证进行重组级联试剂时,不同酶标仪检测样本 Onset time 有差异,因信号采集方式和灵敏度不同。
湖州申科生物重组级联试剂(rCR)采用基因工程技术合成,完全模拟了天然鲎试剂中的酶促级联放大反应。重组鲎试剂反应体系中包含重组C因子、重组B因子和重组凝固酶原。当供试品中存在内毒素,重组C因子识别内毒素后活化,会依次级联活化下游重组B因子和重组凝固酶原。凝固酶原转化为具有生物活性的凝固酶后,识别并催化下游带显色基团的底物产生显色反应。显色反应的强度和内毒素浓度成正相关,从而定量检测内毒素。本产品用于定量测定人用和动物用注射药物、生物制品及医疗器械等样品中的细菌内毒素的含量。
内毒素检测方法验证需覆盖多项参数,确保方法可靠:线性范围需包含样品预期浓度(如 0.01-10 EU/mL),相关系数 R²≥0.98;准确度通过加标回收率评估,应在 50%-200% 范围内;精密度包括批内和批间精密度,CV 值均应≤15%;检测限(LOD)需低于产品限值的 1/2(如限值 0.5 EU/mL,LOD 应≤0.25 EU/mL);专属性需证明无干扰物质影响(如 β- 葡聚糖、蛋白质不引发假阳性)。验证通过后,方法需经实验室负责人批准方可使用,且定期需进行一次回顾性验证,确认方法持续有效。
凝胶法鲎试剂通过观察凝胶形成定性内毒素,操作简便,适合医疗器械内毒素检测初筛。
样品中存在的非特异性鲎反应启动物,会绕过内毒素直接触发鲎试剂反应,导致内毒素检测出现假阳性,需针对性消除干扰。常见的非特异性启动物包括 1,3-β-D 葡聚糖和含丝氨酸蛋白酶的生物制品(如胰酶):1,3-β-D 葡聚糖会启动鲎试剂的 G 因子旁路,不依赖内毒素即可引发凝胶形成或光度变化;胰酶等丝氨酸蛋白酶类物质,其作用机制与内毒素触发鲎试剂的过程相似,会模拟内毒素信号导致误判。针对这类干扰,若样品含 1,3-β-D 葡聚糖,可使用试剂盒配套的抗增液,通过抑制 G 因子活性阻断旁路启动;若样品为胰酶等生物制品,可通过加热处理(如 80℃加热 10 分钟)灭活丝氨酸蛋白酶,避免其模拟内毒素反应。这些处理措施能有效排除非特异性信号,确保内毒素检测只针对目标内毒素产生响应,提升结果准确性。
天然鲎试剂依赖鲎血,资源短缺,重组试剂成内毒素检测未来趋势。浙江细菌内毒素检测结果判定
内毒素工作标准品(CSE)稀释液配制时涡旋很重要,可使内毒素充分溶解,保证浓度准确。医疗器械内毒素检测结果判定
鲎试验法(LAL 法)是细菌内毒素检测的经典方法,依据反应监测方式可分为三类:凝胶法、浊度法和显色法。凝胶法通过观察是否形成凝胶判断内毒素是否超标,其优势是操作简便、成本较低,适用于定性或半定量检测,如医疗器械初筛;浊度法通过监测反应体系浊度变化速率定量内毒素,灵敏度高(可达 0.005 EU/mL),适用于生物制品原液等高精度需求场景;显色法基于显色底物的吸光度变化定量,抗干扰能力较强,适配复杂基质样品(如含蛋白质的注射液)。三种方法均需严格控制反应温度(37℃±1℃)和时间,确保结果可靠性。
医疗器械内毒素检测结果判定