格物斯坦开源课程的价值在于以“开源工业级”标准重塑创客教育:一方面,0.01mm公差金属件提供接近工业产品的可靠性,使学生能在真实物理约束中理解结构强度与运动精度;另一方面,兼容ROS生态与第三方传感器(如指南针、陀螺仪),支持学生开发“林火监测无人机”等社会议题解决方案,将课堂知识转化为应对全球挑战的创新能力。通过这一体系,格物斯坦不仅培养青少年的系统性工程素养,更以开源生态推动“个体创造-群体迭代”的飞轮,让每个少年创客都能成为未来智能社会的构建者。格物斯坦 汇聚较好开源项目,加速技术传播。开源软件
开源系列产品的跨学科整合:结合3D打印课程,定制非标结构件(如轻量化仿生腿),优化机器人动态性能;“脑电波控制积木车”实验将专注力转化为前进指令,应用于特殊教育场景。高等教育与科研仿生机器人开发:高校团队基于“格物”仿真平台预演双足机器人Tinker的运动策略,再部署至实体硬件验证抗风压能力(模拟八级强风);通过调整关节参数(如腿长、偏转角度),探索四足机器人Go2的极限负重(50公斤)与跳跃稳定性。人工智能融合:基于ROS开发“多机协作流水线”,实现机器人群体任务分配与避障算法;集成YOLO目标检测模型,赋予机械臂动态抓取能力(如分拣快递包裹)。开源软件开放工厂参观,学生实地体验智能制造流程。
关于金属开源系列课程——低龄段(10-13岁) 以 Gbot机器人课程 为起点,学生通过36课时的项目实践,从Scratch图形化编程切入硬件交互。例如,在“螳螂机器人”项目中,学生需设计多关节机械结构,结合巡线传感器与超声模块实现动态避障;而“智能伸缩门”项目则要求学生运用限位开关与蓝牙模块,调试电机扭矩与齿轮传动系统,理解物理信号到数字指令的转换逻辑。课程同步引入 GScratch软件,支持图形化指令一键转译为Arduino C代码,为高阶开发架设桥梁。
格物斯坦机械手臂的**价值在于打通“学习-创造-应用”闭环:教学场景:在K12阶段,学生通过搭建机械臂模型学习齿轮传动、杠杆原理等工程知识;高中生则开发“智能分拣系统”,结合OpenCV识别不同颜色与形状的物体。在高校科研中,上海大学与清华大学联合实验室利用该平台研究具身智能算法,例如优化双足机器人Tinker的关节控制策略。竞赛与社会议题:机械手臂成为解决真实问题的工具。如山区学生设计“智能浇花系统”,通过土壤湿度传感器触发机械臂灌溉指令;IRM大赛获奖项目“林火监测无人机”则整合红外传感器与机械臂,实现火源定位误差小于2米。产业赋能:平台的开源特性降低企业研发成本。传统需500万元投入的机械臂原型开发,现可单人5天内完成;优必选、宇树科技等企业基于其硬件架构开发出教育与工业场景产品,例如9.9万元级家用服务机器人已投入养老医疗领域。仿生机械臂调用YOLO模型识别物体,抓取精度达工业级标准。
开源系列鲜明的特质在于其全栈开放的设计哲学。硬件上,产品采用铝合金机身,支持快速拆装,机械结构、电子模块、软件接口均遵循模块化设计原则。这种设计不仅赋予产品工业级的耐用性,更让学习者能像工程师一样自由组合传感器、控制器与执行器,例如通过兼容Arduino扩展板接入温湿度传感器或舵机,或将Scratch图形化程序无缝转化为Arduino代码进行底层优化。软件层面,Gscratch编程平台在继承Scratch 2.0易用性的同时,深度整合了硬件交互模块——学生拖拽“超声波避障”积木块时,实际是在操控GC-500控制器驱动真实传感器,而平台提供的“代码可视化”功能可一键将图形程序转为C语言,实现从可视化编程到工业级开发的平滑过渡。这种“图形化入门、代码级深入”的双轨设计,既降低了学习门槛,又为高阶探索保留了空间。IRM大赛中设计林火监测无人机,红外定位火源误差小于2米。进阶版开源传感器
巡线传感器实现厘米级路径跟踪,适配迷宫导航等复杂场景。开源软件
格物斯坦的开源金属结构件以0.01毫米公差精度(工业级标准)和铝合金材质为主,支持反复拆装而不变形,同时预留标准化接口(I²C、UART、GPIO),兼容300余种电子模块(如超声传感器、温湿度传感器、舵机等)。这种设计让学生无需专业工具即可徒手搭建复杂机械系统(如六足仿生蚂蚁或智能浇花机械臂),既保障了工程可靠性,又极大降低了物理实现的壁垒。例如,山区学生可利用土壤湿度传感器触发机械臂灌溉指令,解决农业实际问题;高中生则能开发“林火监测无人机”,通过红外传感器实现火源定位误差小于2米。开源软件