格物斯坦机械手臂采用**度铝合金结构件,通过超精密加工技术实现0.01毫米公差精度,确保机械臂在高速运动中的稳定性和耐久性。其关节模块搭载高扭矩舵机(扭矩范围0.15-20kg·cm),支持多自由度运动(如六轴协同),并预留标准化接口(I²C、UART、GPIO),兼容超声测距、红外巡线、温湿度传感器等300余种电子模块,以及第三方执行器如气动机械爪。**控制器GC-500/GC-600系列集成蓝牙4.0模块,支持手机App遥控(如“你画我跑”轨迹生成、语音指令交互),同时深度兼容ROS(Robot Operating System)开发套件。这一设计使学生可直接调用ROS中的运动控制API、传感器驱动库及OpenCV视觉算法,用Python/C++编写自主导航程序,实现从仿真到实体硬件的无缝迁移。全金属模块化设计,兼容Scratch、Arduino及ROS生态,扩展性强大。0基础学习开源创客教育编程体系
格物斯坦的开源系列产品构建了一套覆盖3至16岁全年龄段的梯度化教育生态,其设计精细契合不同年龄段学习者的认知发展规律与创造力激发需求,通过“硬件精度+软件适配+场景进阶”的三维支撑,让每个成长阶段的孩子都能找到技术探索的支点。高阶创造阶段(13-16岁):工业级开发与跨学科创新开源系列的设计体现于GC-500/GC-600控制器与金属结构件(0.01mm公差精度),其深度兼容ROS开发套件与Arduino生态,支持Python/C++编写工业级算法。学生可开发复杂项目如:仿生机械臂:调用OpenCV视觉库实现动态分拣,通过YOLO模型识别物体颜色与形状,抓取精度达毫米级;自主平衡车:融合陀螺仪与强化学习算法,模拟八级强风环境优化抗扰策略;林火监测系统:整合红外传感器与无人机,实现火源定位误差小于2米。0基础学习开源创客教育编程体系GC-500控制器开源设计,兼容ROS生态调用运动控制API。
格物斯坦的金属开源机器人系列(如铁达摩、GBOT系列)采用**度铝合金结构件,兼容Scratch、Arduino及ROS(RobotOperatingSystem)生态,硬件精度达0.01毫米,软件层面支持图形化编程至C++的无缝过渡。这一开放性设计吸引全球开发者加入OpenLoong开源社区,通过每周线下分享会与在线协作,共同优化机器人算法与硬件设计。产业转化方面,平台***降低研发成本:传统需500万元投入、数十人团队的机器人原型开发,如今单人5天内即可完成,成本骤降90%。典型案例包括:双足机器人Tinker:实现抗扰行走与动态平衡,模拟八级强风环境仍保持稳定;四足机器人Go2:完成50公斤负重跳跃测试,运动性能经仿真预演后精细迁移至实体;智能分拣系统:高校团队结合OpenCV视觉识别与机械臂控制积木模块,实现物流场景高效分拣。
物斯坦的开源金属结构件是其教育编程机器人产品的重要载体,其制造工艺融合了非常精密的工程与自主研发的创新设计,通过很严格的微米级精度控制与模块化扩展能力,为青少年创客提供了兼具工业强度与教育适配性的技术平台。在工艺层面,格物斯坦采用**度铝合金作为主体材料,通过超精密加工技术(如数控磨削、激光切割)确保结构件公差精度达0.01毫米(相当于头发丝的十分之一),为做到适配青少年编程机器人教育学习,开源系列产品金属结构件这一标准已经远超普通教育器材。未来属于开源:透明、协作、持续进化。
格物斯坦通过线上社区(OMO平台) 与赛事活动构建创新网络:学生可共享3D模型、代码库(如“全自动象棋机器人”开源方案),复用成熟模块聚焦功能优化,避免“重复造轮”;企业如优必选、宇树科技基于其硬件架构二次开发,将传统需500万元投入的机械臂原型压缩至单人5天完成,推动创客成果向产业转化;全球开发者通过OpenLoong社区协作优化ROS驱动包,形成“个体创造-群体迭代”的飞轮效应。格物斯坦开源系列的本质,是以工业级的精度(0.01mm结构件)支撑教育级的容错,以分层的工具链(点读笔→ROS)匹配认知跃迁(具象→抽象→创造),通过开源生态将碎片化创意整合为系统性解决方案。这种结合不仅让小学生能在48小时内完成声控家居机器人原型,更让创客教育从“兴趣工坊”升维为“未来工程师的孵化器”——在这里,每个孩子既是问题的发现者,也是变革的创造者。示波器监测接口开源化,实时调试硬件运行参数。0基础学习开源创客教育编程体系
微型机床课程开源“数字匠人”设计图,培养智能制造技能。0基础学习开源创客教育编程体系
在软件与编程工具领域,格物斯坦构建了多层级开源生态。是基于Scratch 2.0深度优化的Gscratch图形化编程软件,不仅保留拖拽积木式编程的易用性,更创新性地加入硬件交互模块,可直接控制开源机器人执行动作,并支持图形化代码一键转换为Arduino C语言,为高阶学习者提供平滑过渡路径。同时,公司适配国际主流开源框架,如集成ROS(Robot Operating System)开发套件,提供传感器驱动、运动控制等底层库函数,高中生可通过Python或C++编写自主导航算法,在Gazebo仿真环境中预演机器人行为,再部署至实体硬件验证。这种“虚拟-实体”联动的开发模式大幅降低了机器人算法的试错成本。0基础学习开源创客教育编程体系